Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    An evaluation of a severe smog episode in the Eastern U.S. using regional modeling and satellite measurements
    (2011) Yegorova, Elena Andreyevna; Dickerson, Russell R; Allen, Dale J; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    An ensemble of regional chemical modeling (WRF/Chem with RADM2) simulations, satellite, ozonesonde, and surface observations during July 7-11, 2007 was used to examine the horizontal and vertical signature of one of the worst smog events in the eastern U.S. in the past decade. The general features of this event -- a broad area of high pressure, weak winds and heavy pollution, terminated by the passage of a cold front -- were well simulated by the model. Average 8-hr maximum O3 has a mean (±Σ) bias of 0.59 (±11.0) ppbv and a root mean square error of 11.0 ppbv. WRF/Chem performed the best on poor air quality days, simulating correctly the spatial pattern of surface O3. Yet the model underpredicted O3 maxima by 5-7 ppbv in the Northeast and overpredicted by 8-11 ppbv in the Southeast. High O3 biases in the Southeast are explained by overpredicted temperatures in the model (>1.5°C). Sensitivity simulations with 1) accelerated O3 dry deposition velocity and 2) suppressed multiphase nitric acid formation pushed the model closer to observations. Simulated O3 vertical profiles over Beltsville, MD showed good agreement with ozonesonde measurements, but the modeled boundary layer depth was overpredicted on July 9, contributing to the low bias over this region. During this severe smog episode, space-borne TES detected high total tropospheric column ozone (TCO) over the Western Atlantic Ocean off the coast near North and South Carolina. The standard product (OMI/MLS) missed the magnitude of these local maxima, but the level-2 ozone profile (OMI) confirmed the TES observations. HYSPLIT back trajectories from these O3 maxima intersected regions of strong convection over the Southeast and Great Lakes regions. When lightning NO emissions were implemented in WRF/Chem, the high concentrations of NOx and O3 off the coast were well reproduced, showing that the exported O3 was produced by a combination of natural NO and pollutants lofted from the lower atmosphere. Lastly, WINTER MONEX O3 data from 1978 are presented for the first time here in discussion of open cell convection over Indonesia.
  • Thumbnail Image
    Item
    An analysis of convective transport, Lightning NO.sub.x production, and chemistry in midlatitude and subtropical thunderstorms
    (2006-10-18) Ott, Lesley Elaine; Dickerson, Russell R.; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The impact of lightning NO.sub.x production and convective transport on tropospheric chemistry was studied in four thunderstorms observed during field projects using a 3-dimensional (3-D) cloud-scale chemical transport model (CSCTM). The dynamical evolution of each storm was simulated using a cloud-resolving model, and the output used to drive the off-line CSCTM which includes a parameterized source of lightning NO.sub.x based on observed cloud-to-ground (CG) and intracloud (IC) flash rates. Simulated mixing ratios of tracer species were compared to anvil aircraft observations to evaluate convective transport in the model. The production of NO per CG flash (P.sub.CG) was estimated based on mean observed peak current, and production per IC flash (P.sub.IC) was scaled to P.sub.CG. Different values of P.sub.IC/P.sub.CG were assumed and the results compared with in-cloud aircraft measurements to estimate the ratio most appropriate for each storm. The impact of lightning NO.sub.x on ozone and other species was examined during the storm in the CSCTM and following each storm in the convective plume using a chemistry-only version of the model which includes diffusion but without advection, and assumes clear-sky photolysis rates. New lightning parameterizations were implemented in the CSCTM. One parameterization uses flash length data, rather than flash rates, as input, and production per meter of flash channel length is estimated. A second parameterization simulates indivdual lightning flashes rather than distributing lightning NOx uniformly among a large number of gridcells to better reproduce the variability of observations. The results suggest that PIC is likely on the order of PCG and not significantly less as has been assumed in many global modeling studies. Mean values of PCG=500 moles NO and PIC=425 moles NO have been estimated from these simulations of midlatitude and subtropical continental thunderstorms. Based on the estimates of production per flash, and an assumed ratio of the number of IC to CG flashes and global flash rate, a global annual lightning NO source of 8.6 Tg N yr-1 is estimated. Based on these simulations, vertical profiles of lightning NOx mass for subtropical and midlatitude continental regimes have been computed for use in global and regional chemical transport models.