Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Growth and Characterization of Multiferroic BaTiO3-CoFe2O4 Thin Film Nanostructures
    (2004-12-08) Zheng, Haimei; Salamanca-Riba, Lourdes; Ramesh, Ramamoorthy; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Multiferroic materials which display simultaneous ferroelectricity and magnetism have been stimulating significant interest both from the basic science and application point of view. It was proposed that composites with one piezoelectric phase and one magnetostrictive phase can be magnetoelectrically coupled via a stress mediation. The coexistence of magnetic and electric subsystems as well as the magnetoelectric effect of the material allows an additional degree of freedom in the design of actuators, transducers, and storage devices. Previous work on such materials has been focused on bulk ceramics. In the present work, we created vertically aligned multiferroic BaTiO3-CoFe2O4 thin film nanostructures using pulsed laser deposition. Spinel CoFe2O4 and perovskite BaTiO3 spontaneously separated during the film growth. CoFe2O4 forms nano-pillar arrays embedded in a BaTiO3 matrix, which show three-dimensional heteroepitaxy. CoFe2O4 pillars have uniform size and spacing. As the growth temperature increases the lateral size of the pillars also increases. The size of the CoFe2O4 pillars as a function of growth temperature at a constant growth rate follows an Arrhenius behaviour. The formation of the BaTiO3-CoFe2O4 nanostructures is a process directed by both thermodynamic equilibrium and kinetic diffusion. Lattice mismatch strain, interface energy, elastic moduli and molar ratio of the two phases, etc., are considered to play important roles in the growth dynamics leading to the nanoscale pattern formation of BaTiO3-CoFe2O4 nanostructures. Magnetic measurements exhibit that all the films have a large uniaxial magnetic anisotropy with an easy axis normal to the film plane. It was calculated that stress anisotropy is the main contribution to the anisotropy field. We measured the ferroelectric and piezoelectric properties of the films, which correspond to the present of BaTiO3 phase. The system shows a strong coupling of the two order parameters of polarization and magnetization through the coupled lattices. This approach to the formation of self-assembled ferroelectric/ferro(ferri-)magnetic nanostructures is generic. We have created similar nanostructures from other spinel-perovskite systems such as BiFeO3-CoFe2O4, BaTiO3-NiFe2O4, etc., thus making it of great interest and value to a broad materials community.