Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Mesh Adaption for Tracking Vortex Structures in OVERTURNS Simulation of the S-76 Rotor in Hover
    (2016) Hayes, John Kaney; Baeder, James D; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.
  • Thumbnail Image
    Item
    Outflow boundary conditions for low-Mach buoyant computational fluid dynamics
    (2013) Trettel, Benjamin Michael; Trouve, Arnaud C; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    General issues with outflow boundary conditions are discussed, as are the issues specific to flow with buoyancy such as unphysical build-up of fluid at the outflow boundary. Different solutions to these problems are detailed. The sponge-layer approach is used to model the outflow boundary in buoyant jets. The successes and shortcomings of the sponge-layer approach are made clear through comparisons with long domain simulations.