Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
3 results
Search Results
Item WARM SEASON HYDROLOGIC PROCESSES IN A BOREAL FOREST HILLSLOPE AND CATCHMENT, NEWFOUNDLAND(2020) Talbot-Wendlandt, Haley; Prestegaard, Karen; Geology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Prior investigations into boreal forest ecosystems have examined hydrological processes on plot scales, examining factors such as precipitation, soil characteristics, tree rooting depths, evapotranspiration, infiltration, and groundwater, or on the catchment scale, investigating factors such as stream discharge and water chemistry. In this study, I examine hydrological processes at both plot and catchment scales, with the goal of understanding how rooting depths influence evapotranspiration (ET) and the effects of ET on catchment discharge and water chemistry. Evapotranspiration was found to influence seasonal and diurnal fluctuations in groundwater table, stream discharge, and stream electrical conductivity. Tree rooting depths were shallow, primarily within O and Ae soil horizons, suggesting that these trees intercept infiltrating water, reducing summer groundwater recharge. Stream electrical conductivity increased with cumulative ET. Summer streamflow minima coincided with hillslope groundwater minima. Stream depth and conductivity exhibited similar diurnal patterns, suggesting variations in groundwater contributions and opportunities for future research.Item Impacts of a changing fire frequency on soil carbon stocks in interior Alaskan boreal forests(2014) Hoy, Elizabeth Embury; Kasischke, Eric S; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Increasing temperatures and drier conditions, related to climate change, have resulted in changes to the fire regime in interior Alaskan boreal forests, including increases in burned area and fire frequency. These fire regime changes alter carbon storage and emissions, especially in the thick organic soils of black spruce (Picea mariana) forests. While there are ongoing studies of the size and severity of fire using ground- and remote-based studies in mature black spruce forests, a better understanding of fire regime changes to immature black spruce forests is needed. The goal of this dissertation research was to assess impacts of changing fire frequency on soil organic layer (SOL) carbon consumption during wildland fires in recovering Alaskan black spruce forests using a combination of geospatial and remote sensing analyses, field-based research, and modeling. The research objectives were to 1) quantify burning in recovering vegetated areas; 2) analyze factors associated with variations in fire frequency; 3) quantify how fire frequency affects depth of burning, residual SOL depth, and carbon loss in the SOL of black spruce forests; and 4) analyze how fire frequency impacts carbon consumption in these forests. Results showed that considerable burning in the region occurs in stands not yet fully recovered from earlier fire events (~20% of burned areas are in immature stands). Additionally, burning in recovering black spruce forests (~40 yrs old) resulted in SOL depth of burn similar to that in mature forests which have burned. Incorporating these results into a modeling framework (through adding an immature black spruce fuel type and associated ground-layer carbon consumption values) resulted in higher ground-layer carbon consumption (and thus total carbon consumed) for areas that burned in 2004 and 2005 than that of a previous version of the model. This research indicated that the dominant controls on fire behavior in this system were fuel type and amount, not fuel condition, and that changes in vegetation associated with more frequent fire (shift to deciduous and shrub vegetation which does not traditionally burn as readily) may represent a long-term negative feedback on burned area. These new results provide insight into the fire-climate-vegetation dynamics within the region and could be used to both inform and validate modeling efforts to better estimate soil carbon pools and emissions as climate continues to change.Item IMPACT OF CLIMATE CHANGE ON WILDLAND FIRE THREAT TO THE AMUR TIGER AND ITS HABITAT(2008-05-09) Loboda, Tatiana V; Justice, Christopher O; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Global biodiversity is increasingly threatened by combined pressures from human- and climate-related environmental change. Projected climate change indicates that these trends are likely to continue and may accelerate by the end of this century leading to large scale modification of species habitats. Such modification will be amplified by an increase in catastrophic natural events such as wildland fire - one of the dominant disturbance agents in boreal and temperate forests of the Russian Far East (RFE). In the RFE, large fire events lead to abrupt, extensive, and long-term conversion of forests to open landscapes, thus considerably impacting the habitat of the critically endangered Amur tiger (Panthera tigris altaica). A remotely sensed data-driven regional fire threat model (FTM) is developed to assess current and projected fire threat to the Amur tiger under scenarios of climate change. The FTM is parameterized to account for regional specifics of fire occurrence in the RFE and fire impacts on the Amur tigers, their main prey, and their habitat. Fire regimes are shown to be strongly influenced by anthropogenic use of fire and the monsoonal climate of the RFE, with large fire seasons observed during uncharacteristically dry years. Even with a large proportion of human ignition sources and periodic extreme events, fire currently poses a limited threat to the Amur tiger meta-population. The observed peaks in high fire threat conditions are localized in space and time and are likely to impact a small number of individual tigers. Under the wide range of the IPCC climate change scenarios, no considerable change in fire danger is expected by the mid-21st century. However, by the end of the 21st century under the A2 (regional self-reliance) scenario of the IPCC Special Report on Emissions, fire danger over the southern part of the RFE is predicted to increase by nearly 15%. An overlap of areas of likely increase in fire danger with areas of highest tiger habitat quality results in a 20% mean yearly increase in fire threat with a mean monthly increase of ~40% in August. The results have implications for conservation strategies aimed at securing long-term habitat availability.