Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    A DATA ANALYTICAL FRAMEWORK FOR IMPROVING REAL-TIME, DECISION SUPPORT SYSTEMS IN HEALTHCARE
    (2010) Yahav, Inbal; Shmeuli, Galit; Business and Management: Decision & Information Technologies; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this dissertation we develop a framework that combines data mining, statistics and operations research methods for improving real-time decision support systems in healthcare. Our approach consists of three main concepts: data gathering and preprocessing, modeling, and deployment. We introduce the notion of offline and semi-offline modeling to differentiate between models that are based on known baseline behavior and those based on a baseline with missing information. We apply and illustrate the framework in the context of two important healthcare contexts: biosurveillance and kidney allocation. In the biosurveillance context, we address the problem of early detection of disease outbreaks. We discuss integer programming-based univariate monitoring and statistical and operations research-based multivariate monitoring approaches. We assess method performance on authentic biosurveillance data. In the kidney allocation context, we present a two-phase model that combines an integer programming-based learning phase and a data-analytical based real-time phase. We examine and evaluate our method on the current Organ Procurement and Transplantation Network (OPTN) waiting list. In both contexts, we show that our framework produces significant improvements over existing methods.
  • Thumbnail Image
    Item
    Anomaly Detection in Time Series: Theoretical and Practical Improvements for Disease Outbreak Detection
    (2009) Lotze, Thomas Harvey; Shmueli, Galit; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The automatic collection and increasing availability of health data provides a new opportunity for techniques to monitor this information. By monitoring pre-diagnostic data sources, such as over-the-counter cough medicine sales or emergency room chief complaints of cough, there exists the potential to detect disease outbreaks earlier than traditional laboratory disease confirmation results. This research is particularly important for a modern, highly-connected society, where the onset of disease outbreak can be swift and deadly, whether caused by a naturally occurring global pandemic such as swine flu or a targeted act of bioterrorism. In this dissertation, we first describe the problem and current state of research in disease outbreak detection, then provide four main additions to the field. First, we formalize a framework for analyzing health series data and detecting anomalies: using forecasting methods to predict the next day's value, subtracting the forecast to create residuals, and finally using detection algorithms on the residuals. The formalized framework indicates the link between the forecast accuracy of the forecast method and the performance of the detector, and can be used to quantify and analyze the performance of a variety of heuristic methods. Second, we describe improvements for the forecasting of health data series. The application of weather as a predictor, cross-series covariates, and ensemble forecasting each provide improvements to forecasting health data. Third, we describe improvements for detection. This includes the use of multivariate statistics for anomaly detection and additional day-of-week preprocessing to aid detection. Most significantly, we also provide a new method, based on the CuScore, for optimizing detection when the impact of the disease outbreak is known. This method can provide an optimal detector for rapid detection, or for probability of detection within a certain timeframe. Finally, we describe a method for improved comparison of detection methods. We provide tools to evaluate how well a simulated data set captures the characteristics of the authentic series and time-lag heatmaps, a new way of visualizing daily detection rates or displaying the comparison between two methods in a more informative way.