Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Evaluating the Potential Benefits and Sustainability of a Novel Living and Dead Cover Crop Mixture in Mid-Atlantic Crop Production
    (2023) Johnson, Veronica; Hooks, Cerruti RR; Entomology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Modern vegetable production systems are often characterized by monoculture fields andthe intensive use of tillage and/or synthetic agrochemicals for managing weeds and insect pests. A growing public interest in more sustainable and eco-friendly production practices has resulted in increased demand that crops be produced with lower inputs. Incorporating flowering living mulches and cover crop residues within crop fields can create an environment more hospitable to beneficial organisms and less conducive to pest outbreaks. My dissertation research aims to advance our knowledge in this area by evaluating the impacts of a novel cover cropping tactic which involves combining a perennial flowering living mulch with cover crop residue on insects and/or weeds. Further, it is often suggested that weed management requires a holistic approach; and that cover cropping will not be successful as a sole weed management tactic. As such, another research aim is to investigate whether combining a cover cropping tactic with herbicide sprays would result in better weed suppression and increased yield in sweet corn compared to using cover crops alone. An economic assessment was also performed to further evaluate the practicality of sweet corn producers adopting the management practices being investigated. Cost of seeds, labor and other expenses can be a primary limitation to cover crop usage. To this point, I also evaluated the feasibility of using a single cover crop planting to suppress weeds over multiple cropping systems and field seasons. If a single cover crop planting can be used over multiple seasons, this could reduce the cost of cover crop use. Agricultural intensification and conversion of natural landscapes to crop production fields have contributed to declines in insect biodiversity including natural enemies and pollinators. Advancing our understanding of how increasing vegetational diversity within crop fields influences weed pressure and populations of herbivores and beneficial arthropods, as well as production costs, can facilitate the adoption of practices in annual cropping systems that favor beneficial organisms and conserves insect biodiversity.
  • Thumbnail Image
    Item
    Weed Suppression By Forage Radish Winter Cover Crops
    (2010) Lawley, Yvonne Elizabeth; Weil, Ray R; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Forage radish (Raphanus sativus L. var. longipinnatus) is a new winter cover crop in the Mid-Atlantic region. This study had three objectives: 1) to characterize the repeatability, amount, and duration of weed suppression during and after a fall-planted forage radish cover crop 2) to quantify its subsequent effect on direct seeded corn, and 3) to identify the mechanisms of this weed suppression. Forage radish cover crops were grown in ten site-years and followed by a corn crop in seven site-years in the coastal plain of Maryland. Forage radish was compared to rye (Secale cereale L.), oat (Avena sativa L.), and no cover crop treatments. Early and typical corn planting dates along with contrasting herbicide management strategies were compared over four site-years. Forage radish did not reduce population or yield in subsequent corn crops. Forage radish provided complete suppression of winter annual weeds in the fall and early spring but the suppression did not persist into the following cropping season. When forage radish cover crops were used in place of pre-plant burn down herbicide treatments to control weeds in early planted corn, some weeds were present at the time of corn emergence but corn yields were not reduced if emerged weeds were controlled with a postemergence herbicide. Controlled environment bioassays involving cover crop amended soil, aqueous plant extracts, and aqueous soil extracts along with a field experiment involving planted weed seeds did not provide evidence of allelopathy. In a residue moving experiment, no difference in spring weed suppression was observed if forage radish residues were removed prior to killing frost in November or left in place to decompose in three of four site-years. These results were supported by planting date experiments where fall ground cover and spring weed suppression was greatest for earlier planting dates of forage radish cover crops. Thus, rapid and competitive fall growth, rather than allelopathy, is the most likely mechanism of weed suppression by forage radish winter cover crop. Strategies to utilize the weed suppression of forage radish cover crops should focus on fall weed suppression and the early spring pre-plant window of weed control.