Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item EXPERIMENTAL EVALUATION AND SIMULATION RESEARCH ON NOVEL VARIABLE REFRIGERANT FLOW SYSTEM(2017) Lin, Xiaojie; Radermacher, Reinhard; Srebric, Jelena; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Variable refrigerant flow (VRF) system is a popular building air conditioning system which could provide cooling or heating to individual rooms independently. The system is called “variable refrigerant flow” system due to its capability of regulating the refrigerant flow via the precise control of variable speed compressors and electronic expansion valves in each indoor unit. In this dissertation, an advanced VRF system which could provide space cooling, heating and water heating is experimentally evaluated in cooling and heating season for both heat recovery operation and water heating operation. The VRF system is simulated in EnergyPlus and validated with experimental data. Based on the deviation analysis and literature review, it is found that the existing VRF model could not fully reflect the operation characteristic of VRF systems, leading to a high uncertainty in cooling/heating energy and energy consumption. A new VRF model is thereafter proposed, validated in this research and resulted in a model uncertainty less than 5%. Based on the new model, the seasonal performance of an energy saving control strategy and the concept of chilled water storage are investigated. Meanwhile, to solve the mismatch between the building’s thermal load and cooling/heating capability of the VRF system, a new VRF system with phase change material (PCM) based thermal energy storage (TES) is proposed. The new VRF system utilizes single TES device to support both cooling and heating season operation. The performance of new VRF system with PCM based TES is investigated and compared to that of the baseline VRF system. It is found that the new VRF system with PCM based TES could achieve both energy efficiency and demand response goals in cooling and heating season. Based on the comparison, the effect of operation strategies and grid incentive program are discussed. Finally, the economic analysis of the new VRF system with PCM based TES based on annual performance is carried out.Item An evaluation of a severe smog episode in the Eastern U.S. using regional modeling and satellite measurements(2011) Yegorova, Elena Andreyevna; Dickerson, Russell R; Allen, Dale J; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)An ensemble of regional chemical modeling (WRF/Chem with RADM2) simulations, satellite, ozonesonde, and surface observations during July 7-11, 2007 was used to examine the horizontal and vertical signature of one of the worst smog events in the eastern U.S. in the past decade. The general features of this event -- a broad area of high pressure, weak winds and heavy pollution, terminated by the passage of a cold front -- were well simulated by the model. Average 8-hr maximum O3 has a mean (±Σ) bias of 0.59 (±11.0) ppbv and a root mean square error of 11.0 ppbv. WRF/Chem performed the best on poor air quality days, simulating correctly the spatial pattern of surface O3. Yet the model underpredicted O3 maxima by 5-7 ppbv in the Northeast and overpredicted by 8-11 ppbv in the Southeast. High O3 biases in the Southeast are explained by overpredicted temperatures in the model (>1.5°C). Sensitivity simulations with 1) accelerated O3 dry deposition velocity and 2) suppressed multiphase nitric acid formation pushed the model closer to observations. Simulated O3 vertical profiles over Beltsville, MD showed good agreement with ozonesonde measurements, but the modeled boundary layer depth was overpredicted on July 9, contributing to the low bias over this region. During this severe smog episode, space-borne TES detected high total tropospheric column ozone (TCO) over the Western Atlantic Ocean off the coast near North and South Carolina. The standard product (OMI/MLS) missed the magnitude of these local maxima, but the level-2 ozone profile (OMI) confirmed the TES observations. HYSPLIT back trajectories from these O3 maxima intersected regions of strong convection over the Southeast and Great Lakes regions. When lightning NO emissions were implemented in WRF/Chem, the high concentrations of NOx and O3 off the coast were well reproduced, showing that the exported O3 was produced by a combination of natural NO and pollutants lofted from the lower atmosphere. Lastly, WINTER MONEX O3 data from 1978 are presented for the first time here in discussion of open cell convection over Indonesia.