Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    UNDERSTANDING CUSTOMER CHOICES IN SERVICE OUTSOURCING AND REVENUE MANAGEMENT
    (2016) Wang, Zuozheng; Dresner, Martin; Business and Management: Logistics, Business & Public Policy; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation investigates customer behavior modeling in service outsourcing and revenue management in the service sector (i.e., airline and hotel industries). In particular, it focuses on a common theme of improving firms’ strategic decisions through the understanding of customer preferences. Decisions concerning degrees of outsourcing, such as firms’ capacity choices, are important to performance outcomes. These choices are especially important in high-customer-contact services (e.g., airline industry) because of the characteristics of services: simultaneity of consumption and production, and intangibility and perishability of the offering. Essay 1 estimates how outsourcing affects customer choices and market share in the airline industry, and consequently the revenue implications from outsourcing. However, outsourcing decisions are typically endogenous. A firm may choose whether to outsource or not based on what a firm expects to be the best outcome. Essay 2 contributes to the literature by proposing a structural model which could capture a firm’s profit-maximizing decision-making behavior in a market. This makes possible the prediction of consequences (i.e., performance outcomes) of future strategic moves. Another emerging area in service operations management is revenue management. Choice-based revenue systems incorporate discrete choice models into traditional revenue management algorithms. To successfully implement a choice-based revenue system, it is necessary to estimate customer preferences as a valid input to optimization algorithms. The third essay investigates how to estimate customer preferences when part of the market is consistently unobserved. This issue is especially prominent in choice-based revenue management systems. Normally a firm only has its own observed purchases, while those customers who purchase from competitors or do not make purchases are unobserved. Most current estimation procedures depend on unrealistic assumptions about customer arriving. This study proposes a new estimation methodology, which does not require any prior knowledge about the customer arrival process and allows for arbitrary demand distributions. Compared with previous methods, this model performs superior when the true demand is highly variable.
  • Thumbnail Image
    Item
    Discrete Choice Models for Revenue Management
    (2012) Hetrakul, Pratt; Cirillo, Cinzia; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the transportation field, the shift of airline and railway industries toward web-based distribution channels has provided passengers with better access to fare information. This has resulted in passengers becoming more strategic to price. Therefore, a better understanding of passenger choice behavior is required in order to support fare strategies. Methods based on discrete choice (DC) analysis have recently been introduced in revenue management (RM). However, applications of DC models in railway ticket pricing are limited and heterogeneity in choice behavior across different categories of travelers has mostly been ignored. Differences in individual taste are crucial for the RM sector. Additionally, strategic passenger behavior is significant, especially in markets with flexible refund and exchange policy, where ticket cancellation and exchange behavior has been recognized as having major impacts on revenues. This dissertation examines innovative approaches in discrete choice modeling to support RM systems for intercity passenger railway. The analysis, based on ticket reservation data, contributes to the existing literature in three main aspects. Firstly, this dissertation develops choice models of ticket purchase timing which account for heterogeneity across different categories of passengers. The methodology based on latent class (LC) and mixed logit (ML) model framework offers an alternative approach to demand segmentation without using trip purposes which are not available in the data set used for the analysis. Secondly, this dissertation develops RM optimization models which use parameters estimated from the choice models and demand functions as key inputs to represent passenger response to RM policy. The approach distinguishes between leisure and business travelers, depending on departure time and day of week. The formulated optimization problem maximizes ticket revenue by simultaneously solving for ticket pricing and seat allocation. Strategies are subjected to capacity constraints determined on the basis of the railway network characteristics. Finally, this dissertation develops ticket cancellation and exchange model using dynamic discrete choice model (DDCM) framework. The estimated model predicts the timing of ticket cancellations and exchanges in response to trip schedule uncertainty, fare, and refund/exchange policy of the railway service. The model is able to predict new departure times of the exchanged tickets and covers the full range of departure time alternatives offered by the railway company.