Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    CHARACTERIZING THE ROLE OF THE PHOSPHOENOLPYRUVATE-DEPENDENT PHOSPHOTRANSFERASE SYSTEM ENZYME II LOCI IN THE PATHOGENESIS OF THE GROUP A STREPTOCOCCUS
    (2017) Sundar, Ganesh; McIver, Kevin S; Molecular and Cell Biology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome to functionally characterize each EIIC. It was found that a few EIIs had a limited in uence on PTS sugar metabolism, whereas others were promiscuous. The mannose-speci c EII locus exhibited the most in uence on PTS sugar metabolism. Importantly, the mannose-speci c EII also acted to prevent the early onset of SLS-mediated hemolysis. These roles were not identical in two different M1T1 GAS strains, highlighting the versatility of the PTS to adapt to strain-speci c needs. This is further illustrated by the fructose-speci c EII, which is important for survival in whole human blood for MGAS5005, but not 5448. The mannose-speci c EII can transport glucose in other pathogens, but the route of glucose utilization is unknown in GAS. MGAS5005 mutants were generated in a non-PTS glucose transporter (GlcU) and a glucokinase (NagC) of an annotated non-PTS glucose metabolic pathway. Since ∆ptsI, ∆nagC, and ∆glcU all grow to some extent in glucose, it is evident that glucose can be metabolized both by PTS and non-PTS routes. . However, the route of glucose utilization affects overall pathogenesis, as ∆nagC survives like WT in whole human blood, whereas ptsI is unable to survive. Subcutaneous infection of mice with ∆nagC did not exhibit increased lesion size, although these lesions are more severe than MGAS5005 due to the early onset of hemolysis. Overall this suggests that the routes of glucose metabolism greatly in uence SLS-mediated hemolysis. These results highlight that PTS carbohydrate metabolism plays an important role for GAS pathogenesis in both the skin and whole human blood, through the actions of EIIs.
  • Thumbnail Image
    Item
    Comparative genomic analysis of Vibrio cholerae O31: capsule, O-antigen, pathogenesis and genome
    (2006-11-21) Chen, Yuansha; Morris, J Glenn; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Vibrio cholerae is the causative agent of cholera. In order to understand the genetic basis underlying the emergence of novel epidemic strains of V. cholerae, the genetics of surface polysaccharide biogenesis, and the role of lateral gene transfer in the evolution of this species, we investigated. NRT36S and A5 are both NAG-ST producing, cholera toxin negative, serogroup O31 V. cholerae. NRT36S is encapsulated and causes diarrhea when administered to volunteers; A5 is acapsular and does not colonize or cause illness in humans. The structure of the capsular (CPS) polysaccharide in NRT36S was determined by NMR. The gene cluster of CPS biogenesis was identified by transposon mutagenesis combined with whole genome sequencing data. The CPS gene cluster shared the same genetic locus as that of the O-antigen of lipopolysaccharide (LPS) biogenesis gene cluster. The LPS biogenesis regions in A5 were similar to NRT36S except that a 6.5 kb fragment in A5 replaced a 10 kb fragment in NRT36S in the middle of the LPS gene cluster. The genome of NRT36S was sequenced to a draft containing 174 contigs plus the superintegron region. Besides confirming the existence of NAG-ST, we also identified the genes for a type three secretion system (TTSS), a putative exotoxin, and two different RTX genes. Four pili systems were also identified. Therefore, the genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from O1 V. cholerae. We conclude that lateral gene transfer plays a critical role in the emergence of new strains. The co-location of CPS and LPS could provide a mechanism for simultaneous emergence of new O and K antigens in a single strain. Our data also highlights the apparent mobility within the CPS/LPS region that would provide a basis for the large number of observed V. cholerae serogroups and the emergence of novel epidemic strains.