Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Thermal integration of tubular solid oxide fuel cell with catalytic partial oxidation reactor and anode exhaust combustor for small power application
    (2010) Maxey, Christopher; Jackson, Gregory S; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the current study, a system configuration of a tubular SOFC with a catalytic partial oxidation (CPOx) reactor and an anode exhaust catalytic combustor is explored to test the feasibility of such a system. A system level model was developed to more fully assess system design and operability issues. For the SOFC, a detailed 1-D SOFC determines local current production and is combined with down-the-channel flow models for the SOFC as well as the catalytic combustor/heat exchanger, and CPOx reactor. System model results showed that variations in fuel flow and air to fuel ratio have large impacts on temperature distribution and power out, with lower fuel flows and air-to-fuel ratios providing higher SOFC power densities (~0.64 W/cm2) at high efficiencies (~45%). The system model also shows that external heat loss greatly reduces system power and efficiency but lower air-to-fuel ratios can offset associated temperature and associate performance losses.