Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item DESIGN, DEVELOPMENT, AND EVALUATION OF A DISCRETELY ACTUATED STEERABLE CANNULA(2014) Ayvali, Elif; Desai, Jaydev P; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Needle-based procedures require the guidance of the needle to a target region to deliver therapy or to remove tissue samples for diagnosis. During needle insertion, needle deflection occurs due to needle-tissue interaction which deviates the needle from its insertion direction. Manipulating the needle at the base provides limited control over the needle trajectory after the insertion. Furthermore, some sites are inaccessible using straight-line trajectories due to delicate structures that need to be avoided. The goal of this research is to develop a discretely actuated steerable cannula to enable active trajectory corrections and achieve accurate targeting in needle-based procedures. The cannula is composed of straight segments connected by shape memory alloy (SMA) actuators and has multiple degrees-of-freedom. To control the motion of the cannula two approaches have been explored. One approach is to measure the cannula configuration directly from the imaging modality and to use this information as a feedback to control the joint motion. The second approach is a model-based controller where the strain of the SMA actuator is controlled by controlling the temperature of the SMA actuator. The constitutive model relates the stress, strain and the temperature of the SMA actuator. The uniaxial constitutive model of the SMA that describes the tensile behavior was extended to one-dimensional pure- bending case to model the phase transformation of the arc-shaped SMA wire. An experimental characterization procedure was devised to obtain the parameters of the SMA that are used in the constitutive model. Experimental results demonstrate that temperature feedback can be effectively used to control the strain of the SMA actuator and image feedback can be reliably used to control the joint motion. Using tools from differential geometry and the configuration control approach, motion planning algorithms were developed to create pre-operative plans that steer the cannula to a desired surgical site (nodule or suspicious tissue). Ultrasound-based tracking algorithms were developed to automate the needle insertion procedure using 2D ultrasound guidance. The effectiveness of the proposed in-plane and out-of-plane tracking methods were demonstrated through experiments inside tissue phantom made of gelatin and ex-vivo experiments. An optical coherence tomography probe was integrated into the cannula and in-situ microscale imaging was performed. The results demonstrate the use of the cannula as a delivery mechanism for diagnostic applications. The tools that were developed in this dissertation form the foundations of developing a complete steerable-cannula system. It is anticipated that the cannula could be used as a delivery mechanism in image-guided needle-based interventions to introduce therapeutic and diagnostic tools to a target region.Item DESIGN, DEVELOPMENT, AND EVALUATION OF A MRI-GUIDED NEUROSURGICAL INTRACRANIAL ROBOT(2013) Ho, Mingyen; Desai, Jaydev P.; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Brain tumors are among the most feared complications of cancer. Their treatment is challenging because of the lack of good imaging modality and the inability to remove the complete tumor. To overcome this limitation, we propose to develop a Magnetic Resonance Imaging (MRI)-compatible neurosurgical robot. The robot can be operated under continuous MRI, and the Magnetic Resonance (MR) images can be used to supplement physicians' visual capabilities, resulting in precise tumor removal. We have developed two prototypes of the Minimally Invasive Neurosurgical Intracranial Robot (MINIR) using MRI compatible materials and shape memory alloy (SMA) actuators. The major difference between the two robots is that one uses SMA wire actuators and the other uses SMA spring actuators combined with the tendon-sheath mechanism. Due to space limitation inside the robot body and the strong magnetic field in the MRI scanner, most sensors cannot be used inside the robot body. Hence, one possible approach is to rely on image feedback to control the motion of the robot. In this research, as a preliminary approach, we have relied on image feedback from a camera to control the motion of the robot. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used reliably to control the joint motion of the robots. A series of MRI compatibility tests were performed to evaluate the MRI compatibility of the robots and to assess the degradation in image quality. The experimental results demonstrated that the robots are MRI compatible and created no significant image distortion in the MR images during actuation. The accomplishments presented in this dissertation represent a significant development of using SMA actuators to actuate MRI-compatible robots. It is anticipated that, in the future, continuous MR imaging would be used reliably to control the motion of the robot. It is aspired that the robot design and the control methods of SMA actuators developed in this research can be utilized in practical applications.