Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: Theory and Experiment
    (2011) Roshwalb, Andrew Zvi; Baz, Amr; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis presents a theoretical and experimental investigation of a piezoelec- tric energy harvester coupled to a traveling wave thermoacoustic engine (TWTAE). By simplifying the engine using a lumped-parameter model, the performance pa- rameters such as pressure oscillation frequency and amplitude, regenerator hot end temperature, and piezoelectric output voltage are predicted. Also, an axisymmetric finite element model of the piezoelectric energy harvester is developed, resulting in a two-part reduced-order model of the electromechanical impedance of the harvester. The predictions of the finite element model are compared with those of ANSYS finite element analysis and validated experimentally. The two-part model is utilized in a numerical analysis of the TWTAE using DeltaEC (Design Environment for Low- Amplitude ThermoAcoustic Energy Conversion). Results from pressure transducers and the piezoelectric disc attached to a physical realization of the TWTAE are com- pared with theoretical predictions of the lumped-parameter models and DeltaEC analysis. The developed theoretical techniques and experimental validation provide invaluable tools for effective design of the thermoacoustic-piezoelectric harvester.