Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    INFLAMMATORY MACROPHAGE REGULATION OF ANGIOGENESIS AND SKELETAL MUSCLE PHENOTYPES
    (2023) Evans, William Stuart; Prior, Steven J; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Chronic inflammation is a hallmark of cardiovascular disease; however, there is a lack of understanding of how systemic inflammation affects the peripheral skeletal muscle to potentially hasten frailty and functional declines in patients. The overarching objective of this dissertation was to determine whether this systemic inflammation is accompanied by macrophage infiltration of skeletal muscle and reductions in skeletal muscle capillarization and fiber size. Using animal models of a) heart failure (HF) induced by transverse aortic constriction (TAC), and b) skeletal muscle ischemia, this work illuminates changes that occur in skeletal muscle with cardiovascular disease-related inflammation. The first study demonstrated that pressure overload resulted in cardiac hypertrophy in male rats consistent with heart failure with preserved ejection fraction (HFpEF), while females did not show cardiac hypertrophy or HF. The second study demonstrated sex-specific differences in skeletal muscle, with TAC male rats exhibiting smaller fiber sizes and greater capillarization, and female TAC rats exhibiting lower capillarization than Sham counterparts. This study then investigated skeletal muscle macrophages to determine whether they might underly or contribute to these differences. There were fewer macrophages in the skeletal muscle of male TAC rats than male Sham rats, and macrophage conditioned medium from TAC rats produced less-developed capillary networks in an ex vivo, experimental assay. Finally, the third study investigated whether an acute bout of systemic inflammation, in the absence of HF, could alter the infiltration of macrophages, or skeletal muscle fiber size or capillarization. Hindlimb ischemia was used to induce acute, systemic inflammation that peaked after 1 day. This systemic inflammation increased the infiltration of macrophages into remote, non-ischemic skeletal muscle by day 7; however, muscle structure was preserved over this short time course. This dissertation demonstrates that cardiovascular disease-associated inflammation is linked with tissue-level changes in macrophages in a sex-specific manner. These changes accompany and may, over time, contribute to skeletal muscle fiber atrophy and changes in capillarization in cardiovascular disease patients.
  • Thumbnail Image
    Item
    Cardiac Mitochondrial Function and Exertional Tolerance in a Rat Model of Pressure-Overload Induced Heart Failure
    (2022) Li, Harry Zichen; Kuzmiak-Glancy, Sarah; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Heart failure (HF) is characterized by the inability of the heart to provide adequate cardiac output to meet their body’s demand for fuel and oxygen, particularly during periods of exertion. In fact, a hallmark characteristic of HF is exertional intolerance where performing activities brings about, or exacerbates, symptoms of dyspnea and/or fatigue. This exercise intolerance has been attributed to altered cardiac and skeletal muscle function. The myocardium of the heart is reliant upon cardiac mitochondria to generate sufficient ATP to fuel this highly metabolically active tissue. Therefore, reduced mitochondrial ATP production may play a role in myocardial dysfunction and contribute to reduced cardiac output in HF. Mitochondria react to intracellular signals to respond to energetic demands, and therefore, mitochondrial function is a product of both the mitochondria itself and the environment in which it resides. Intracellular Ca2+ and Na+ are of particular interest as they play a role in regulating mitochondrial function and the intracellular concentrations are elevated in ventricular myocytes in HF. Therefore, a goal of these investigations was to evaluate how altered Na+ and Ca2+ can impact the ability of cardiac mitochondria to respond to an increase in demand in mitochondria isolated from young healthy rat hearts, as well as rats with pressure-overload induced HF. A second goal of these investigations was to determine if pressure-overload induced heart failure altered exercise capacity, as well as in vivo and ex vivo skeletal muscle strength. In the first study, mitochondria were isolated from the ventricular tissue of young, healthy male rats, and oxygen consumption and mitochondrial activation by Ca2+ was assessed in the presence of elevated Na+ to mimic the cellular environment of HF. Ca2+ effectively activated mitochondrial ATP production, despite elevated Na+, suggesting that the ionic conditions of HF ventricular myocytes alone are not sufficient to disrupt mitochondrial function. In the second study, mitochondrial function was assessed under the same ionic conditions as the previous study, however, mitochondria were isolated from male rats with pressure-overload induced hypertrophy or sham-operated controls. Ca2+ was able to activate mitochondrial function regardless of Na+ concentration in both HF and sham mitochondria; however, failing mitochondria exhibited depolarized mitochondrial membrane values across these respiration rates, implicating an impaired potential for ATP production in failing ventricular mitochondria. In the third study, HF and sham male and female rats were evaluated for their exertional tolerance, and the results indicated that HF rats tolerated treadmill running and showed no deficits in grip exercise; however, solei muscle from female heart failure rats exhibited diminished contractile capacity, suggesting female skeletal muscle may respond differently than male skeletal muscle to heart failure. These findings indicate that failing mitochondria may be intrinsically dysfunctional regardless of an altered ionic environment and that there may be sexual dimorphism in the skeletal muscle function and its role in exercise intolerance in HF.