Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item SEARCH FOR GAMMA-RAY COUNTERPARTS OF GRAVITATIONAL WAVE EVENTS AND OTHER TRANSIENT SIGNALS WITH HAWC(2019) Martinez Castellanos, Israel; Goodman, Jordan A; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In recent years we have seen major advances in multi-messenger astronomy. A milestone was achieved by identifying the electromagnetic counterpart of the gravitational wave event GW170817 detected by LIGO and Virgo. Similar efforts led to a set of neutrinos detected by IceCube to be associated with the blazar TXS 0506+056. Both demonstrate the potential of using multiple types of probes to study an astrophysical source. The High-Altitude Water Cherenkov Observatory (HAWC), located in the state of Puebla, Mexico, is a wide field instrument (~2 sr) sensitive to very-high-energy gamma rays (~0.1-100 TeV) which can operate with a large duty cycle (>95%). These characteristics make it well suited to look for transient events correlated with other astronomical messengers. In this work we present a maximum likelihood analysis framework developed to search and analyze signals in HAWC data of arbitrary timescales. We apply this method to search for very-high-energy gamma-ray counterparts of gravitational waves in short timescales (0.3-1000 s). We show that we would be able to either detect or meaningfully constrain the very-high-energy component of a gamma-ray burst within the binary neutron star merger horizon of current gravitational wave detectors if it occurs in our field of view. We did not find evidence for emission for any of the events analyzed. The source location of GW170817 was not observable by HAWC at the time of the merger. We also set flux upper bounds for TXS 0506+056 during the periods when the neutrino flares were identified. For the flare between September 2014 and March 2015 these are the only available limits at very high energy, and are consistent with the low state in high-energy gamma rays reported by the Fermi-LAT Collaboration.Item An All-Sky Search for Bursts of Very High Energy Gamma Rays with HAWC(2016) Wood, Joshua Randall; Goodman, Jordan; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A new ground-based wide-field extensive air shower array known as the High-Altitude Water Cherenkov (HAWC) Observatory promises a new window to monitoring the ~100 GeV gamma-ray sky with the potential for detecting a high energy spectral cutoff in gamma-ray bursts (GRBs). It represents a roughly 15 times sensitivity gain over the previous generation of wide-field gamma-ray air shower instruments and is able to detect the Crab Nebula at high significance (>5 sigma) with each daily transit. Its wide field-of-view (~2 sr) and >95% uptime make it an ideal instrument for detecting GRB emission at ~100 GeV with an expectation for observing ~1 GRB per year based on existing measurements of GRB emission. An all-sky, self-triggered search for VHE emission produced by GRBs with HAWC has been developed. We present the results of this search on three characteristic GRB emission timescales, 0.2 seconds, 1 second, and 10 seconds, in the first year of the fully-populated HAWC detector which is the most sensitive dataset to date. No significant detections were found, allowing us to place upper limits on the rate of GRBs containing appreciable emission in the ~100 GeV band. These constraints exclude previously unexamined parameter space.