Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    EVACUATION ROUTE MODELING AND PLANNING WITH GENERAL PURPOSE GPU COMPUTING
    (2014) Prentiss, David D.; Miller-Hooks, Elise; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This work introduces a bilevel, stochastic optimization problem aimed at robust, regional evacuation network design and shelter location under uncertain hazards. A regional planner, acting as a Stackelberg leader, chooses among evacuation-route contraflow operation and shelter location to minimize the expected risk exposure to evacuees. Evacuees then seek an equilibrium with respect to risk exposure in the lower level. An example network is solved exactly with a strategy that takes advantage of a fast, low-memory, equilibrium algorithm and general purpose computing on graphical processing units.
  • Thumbnail Image
    Item
    Scalable Fast Multipole Methods on Heterogeneous Architecture
    (2013) Hu, Qi; Duraiswami, Ramani; Gumerov, Nail A.; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The N-body problem appears in many computational physics simulations. At each time step the computation involves an all-pairs sum whose complexity is quadratic, followed by an update of particle positions. This cost means that it is not practical to solve such dynamic N-body problems on large scale. To improve this situation, we use both algorithmic and hardware approaches. Our algorithmic approach is to use the Fast Multipole Method (FMM), which is a divide-and-conquer algorithm that performs a fast N-body sum using a spatial decomposition and is often used in a time-stepping or iterative loop, to reduce such quadratic complexity to linear with guaranteed accuracy. Our hardware approach is to use heterogeneous clusters, which comprised of nodes that contain multi-core CPUs tightly coupled with accelerators, such as graphics processors unit (GPU) as our underline parallel processing hardware, on which efficient implementations require highly non-trivial re-designed algorithms. In this dissertation, we fundamentally reconsider the FMM algorithms on heterogeneous architectures to achieve a significant improvement over recent/previous implementations in literature and to make the algorithm ready for use as a workhorse simulation tool for both time-dependent vortex flow problems and for boundary element methods. Our major contributions include: 1. Novel FMM data structures using parallel construction algorithms for dynamic problems. 2. A fast hetegenenous FMM algorithm for both single and multiple computing nodes. 3. An efficient inter-node communication management using fast parallel data structures. 4. A scalable FMM algorithm using novel Helmholz decomposition for Vortex Methods (VM). The proposed algorithms can handle non-uniform distributions with irregular partition shapes to achieve workload balance and their MPI-CUDA implementations are highly tuned up and demonstrate the state of the art performances.
  • Thumbnail Image
    Item
    DECENTRALIZED RESOURCE ORCHESTRATION FOR HETEROGENEOUS GRIDS
    (2012) Lee, Jaehwan; Sussman, Alan; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Modern desktop machines now use multi-core CPUs to enable improved performance. However, achieving high performance on multi-core machines without optimized software support is still difficult even in a single machine, because contention for shared resources can make it hard to exploit multiple computing resources efficiently. Moreover, more diverse and heterogeneous hardware platforms (e.g. general-purpose GPU and Cell processors) have emerged and begun to impact grid computing. Given that heterogeneity and diversity are now a major trend going forward, grid computing must support these environmental changes. In this dissertation, I design and evaluate a decentralized resource management scheme to exploit heterogeneous multiple computing resources effectively. I suggest resource management algorithms that can efficiently utilize a diverse computational environment, including multiple symmetric computing entities and heterogeneous multi-computing entities, and achieve good load-balancing and high total system throughput. Moreover, I propose expressive resource description techniques to accommodate more heterogeneous environments, allowing incoming jobs with complex requirements to be matched to available resources. First, I develop decentralized resource management frameworks and job scheduling schemes to exploit multi-core nodes in peer-to-peer grids. I present two new load-balancing schemes that explicitly account for resource sharing and contention across multiple cores within a single machine, and propose a simple performance prediction model that can represent a continuum of resource sharing among cores of a CPU. Second, I provide scalable resource discovery and load balancing techniques to accommodate nodes with many types of computing elements, such as multi-core CPUs and GPUs, in a peer-to-peer grid architecture. My scheme takes into account diverse aspects of heterogeneous nodes to maximize overall system throughput as well as minimize messaging costs without sacrificing the failure resilience provided by an underlying peer-to-peer overlay network. Finally, I propose an expressive resource discovery method to support multi-attribute, range-based job constraints. The common approach of using simple attribute indexes does not suffice, as range-based constraints may be satisfied by more than a single value. I design a compact ID-based representation for resource characteristics, and integrate this representation into the decentralized resource discovery framework. By extensive experimental results via simulation, I show that my schemes can match heterogeneous jobs to heterogeneous resources both effectively (good matches are found, load is balanced), and efficiently (the new functionality imposes little overhead).
  • Thumbnail Image
    Item
    High Performance Computing for DNA Sequence Alignment and Assembly
    (2010) Schatz, Michael Christopher; Salzberg, Steven L; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical.