Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item Changes in the community structure of urban and rural forest patches in Baltimore from 1998 to 2015(2016) Templeton, Laura Kristine; Sullivan, Joseph; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Urban forests are often highly fragmented with many exotic species. Altered disturbance regimes and environmental pollutants influence urban forest vegetation. One of the best ways to understand the impacts of land-use on forest composition is through long-term research. In 1998, the Baltimore Ecosystem Study established eight forest plots to investigate the impacts of urbanization on natural ecosystems. Four plots were located in urban forest patches and four were located in rural forests. In 2015, I revisited these plots to measure abundances and quantify change in forest composition, diversity, and structure. Sapling, shrub, and seedling abundance were reduced in the rural plots. Alpha diversity and turnover was lower in the rural plots. Beta diversity was reduced in the rural plots. The structure of the urban plots was mostly unchanged, except for a highly reduced sapling layer. Beta diversity in the urban plots was consistent across surveys due to high species turnover.Item Distribution and Dynamics of the Evergreen Understory Layer in Central Appalachian Highland Forests(2004-07-13) Chastain, Robert Arthur; Townsend, Philip A; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Evergreen understory layer communities dominated by Rhododendron maximum L. and/or Kalmia latifolia L. may exert significant controls on regeneration of overstory trees, carbon sequestration, and nutrient retention in central Appalachian forests, but their distribution and ecological importance are poorly understood at the regional scale. The distribution, temporal dynamics, and biomass of the evergreen understory layer were examined in the Ridge and Valley and Allegheny Plateau physiographic provinces in the mid-Atlantic Highlands using plot data, remote sensing, dendrochronology, and modeling. First, leaf-off satellite remote sensing and topographic data were applied to map the spatial extent and distribution of R. maximum and K. latifolia with better than 80 percent accuracy. Second, plot data were used to determine the relevant environmental factors and species associations related to the distributions of K. latifolia and R. maximum and assess their influence on forest vertical structure. Cluster analysis and ordination revealed that topo-edaphic gradients and intensity of gypsy moth defoliation were associated with differences in the distribution of these two shrub species within and between the two study areas, and midstory volume was significantly lower where evergreen understory coverage was continuous. Third, variation in K. latifolia and R. maximum growth rates were examined using remote sensing change detection and dendrochronology, and trends were compared to the timing of climatic fluctuations and gypsy moth defoliation of canopy trees. Remote sensing showed that patterns of evergreen understory growth vigor correlated with both defoliation and topographically mediated drought stress. Dendrochronology revealed considerable within-site variability among individual shrubs. However, both releases and suppressions in growth were associated with the timing of gypsy moth defoliation for K. latifolia in both provinces and for R. maximum in the Allegheny Plateau. Finally, carbon sequestration and nutrient storage impacts of these species were estimated by modeling their current aboveground biomass and ecosystem storage influences on several test watersheds. The inclusion of K. latifolia and R. maximum in the ecosystem model NuCSS indicated increases of up to 4825 kg/ha of carbon and 224 kg/ha of nitrogen storage, including notable increases of carbon and nitrogen in the forest floor and soil pools.