Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    APPLICATIONS OF ENSEMBLE FORECAST SENSITIVITY TO OBSERVATIONS FOR IMPROVING NUMERICAL WEATHER PREDICTION
    (2018) Chen, Tse-Chun; Kalnay, Eugenia; Atmospheric and Oceanic Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Massive amounts of observations are assimilated every day into modern Numerical Weather Prediction (NWP) systems, and more are being deployed. The large volume of data prevents thorough monitoring and screening (QC) the impact of each assimilated observation using standard observing system experiments (OSEs). The presence of so many observations also makes very difficult to estimate the impact of a new observing system using OSEs. Forecast Sensitivity to Observation using adjoint formulation (AFSO, Langland and Baker, 2004) provides an efficient impact evaluation of each observation on forecasts. We propose 3 applications using the simpler ensemble formulation of FSO (EFSO, Kalnay et al., 2012) to improve NWP, namely (1) online monitoring tool, (2) data selection, and (3) proactive quality control (PQC). We first demonstrate PQC on a simple Lorenz (1996) model, showing that EFSO is able to identify artificially '`flawed" observations. We then show that PQC improves the quality of analysis and forecast of the system, even if the observations are flawless, and the improvement is robust against common sub-optimal of DA configurations in operation. A PQC update method reusing the original Kalman gain is found to be both accurate and computationally efficient. EFSO and PQC are then explored with realistic GFS systems. A close-to-operation GFS-GSI Hybrid En-Var system is used to examine the data monitoring and selection applications. The benefit of the online observation monitoring and data rejection based on EFSO is very apparent. Identifying and deleting detrimental radiance channels results in a forecast improvement. Results obtained on a lower resolution GFS system show that PQC significantly improves the quality of analysis and 5-day forecasts for all variables over the globe. Most of the improvement comes from "cycling" PQC, which accumulates improvements brought by deleting detrimental observations over many cycles, rather than from deleting detrimental observations in the current cycle. Thus we avoid using "future data" in PQC and its implementation is shown to be computationally feasible in NCEP operations.
  • Thumbnail Image
    Item
    Proactive Quality Control based on Ensemble Forecast Sensitivity to Observations
    (2014) Hotta, Daisuke; Kalnay, Eugenia; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Despite recent major improvements in numerical weather prediction (NWP) systems, operational NWP forecasts occasionally suffer from an abrupt drop in forecast skill, a phenomenon called "forecast skill dropout." Recent studies have shown that the "dropouts" occur not because of the model's deficiencies but by the use of flawed observations that the operational quality control (QC) system failed to filter out. Thus, to minimize the occurrences of forecast skill dropouts, we need to detect and remove such flawed observations. A diagnostic technique called Ensemble Forecast Sensitivity to Observations (EFSO) enables us to quantify how much each observation has improved or degraded the forecast. A recent study (Ota et al., 2013) has shown that it is possible to detect flawed observations that caused regional forecast skill dropouts by using EFSO with 24-hour lead-time and that the forecast can be improved by not assimilating the detected observations. Inspired by their success, in the first part of this study, we propose a new QC method, which we call Proactive QC (PQC), in which flawed observations are detected 6 hours after the analysis by EFSO and then the analysis and forecast are repeated without using the detected observations. This new QC technique is implemented and tested on a lower-resolution version of NCEP's operational global NWP system. The results we obtained are extremely promising; we have found that we can detect regional forecast skill dropouts and the flawed observations after only 6 hours from the analysis and that the rejection of the identified flawed observations indeed improves 24-hour forecasts. In the second part, we show that the same approximation used in the derivation of EFSO can be used to formulate the forecast sensitivity to observation error covariance matrix R, which we call EFSR. We implement the EFSR diagnostics in both an idealized system and the quasi-operational NWP system and show that it can be used to tune the R matrix so that the utility of observations is improved. We also point out that EFSO and EFSR can be used for the optimal assimilation of new observing systems.