Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    ACTIVE RELOCATION AND DISPATCHING OF HETEROGENEOUS EMERGENCY VEHICLES
    (2014) Sharifi, Elham; Haghani, Ali; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    An emergency is a situation that causes an immediate risk to the property, health, or lives of civilians and can assume a variety of forms such as traffic accidents, fires, personal medical emergencies, terrorist attacks, robberies, natural disasters, etc. Emergency response services (ERSs) such as police, fire, and medical services play crucial roles in all communities and can minimize the adverse effects of emergency incidents by decreasing the response time. Response time is not only related to the dispatching system, but also has a very close relationship to the coverage of the whole network by emergency vehicles. The goal of this dissertation is to develop a model for an Emergency Management System. This model will dynamically relocate the emergency vehicles to provide better coverage for the whole system. Also, when an emergency happens in the system the model will consider dispatching and relocation problem simultaneously. In addition, it will provide real-time route guidance for emergency vehicles. In summary, this model will consider three problems simultaneously: area coverage, vehicle deployment, and vehicle routing. This model is event-based and will be solved whenever there is an event in the system. These events can be: occurrence of an emergency, change in the status of vehicles, change in the traffic data, and change in the likelihood of an emergency happening in the demand nodes. Three categories of emergency vehicle types are considered in the system: police cars, ambulances, and fire vehicles. The police department is assumed to have a homogeneous fleet, but ambulances and fire vehicles are heterogeneous. Advanced Life Support (ALS) and Basic Life Support (BLS) ambulances are considered, along with Fire Engines, Fire Trucks, and Fire Quints in the fire vehicle category. This research attempts to provide double coverage for demand nodes by non-homogenous fleet while increasing the equity of coverage of different demand nodes. Also, the model is capable of considering the partial coverage in the heterogeneous vehicle categories. Two kinds of demand nodes are considered, ordinary nodes and critical nodes. Node demands may vary over time, so the model is capable of relocating the emergency fleet to cover the points with highest demand. In addition, an attempt is made to maintain work load balance between different vehicles in the system. Real-world issues, such as the fact that vehicles prefer to stay at their home stations instead of being relocated to other stations and should be back at their home depots at the end of the work shift, are taken into account. This is a unique and complex model; so far, no study in the literature has addressed these problems sufficiently. A mathematical formulation is developed for the proposed model, and numerical examples are designed to demonstrate its capabilities. Xpress 7.1 is used to run this model on the numerical examples. Commercial software like Xpress can be used to solve the proposed model on small-size problems, but for large-size and real-world problems, an appropriate heuristic is needed. A heuristic method that can find good solutions in reasonable time for this problem is developed and tested on several cases. Also, the model is applied to a real-world case study to test its performance. To investigate the model's behavior on a real-world problem, a very sophisticated simulation model that can see most of the details in the system has been developed and the real case study data has been used to calibrate the model. The results show that the proposed model is performing very well and efficient and it can greatly improve the performance of emergency management centers.
  • Thumbnail Image
    Item
    THE INVENTORY ROUTING PROBLEM WITH THIRD PARTY LOGISTICS
    (2012) Sadrsadat, Hadi; Haghani, Ali; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    There are two key planning issues in supply chain: inventory management and transportation. In this research, the inventory control and transportation of syrup concentrate and final products for one bottling company working for a beverage company is studied. Operation of most of beverage companies is based on a franchised distribution system. In this operation, syrup concentrate is produced by a beverage company and sold to bottlers. Bottlers, in turn, mix the syrup concentrate with different ingredients to produce various products and distribute them to retailers. Unsatisfied orders have several harmful effects on the bottling company. The bottling company may not satisfy all demands due to its small fleet size, which is not able to cover all deliveries in the right timeframe. One method for preventing missed orders is sending orders to some retailers in advance to hold for future use. This allows the fleet to be free to service the rest of the retailers. This policy is possible if those retailers have available capacity to keep products. Another way to deal with this problem is by renting vehicles, which increases the fleet size. The last option for delivering to a retailer when the owned fleet is not able to do so is outsourcing shipping and/or warehousing. The bottling company contracts with a Third Party Logistics Provider (TPLP), who is responsible for delivery of final products to some of the bottler's retailers. Also, TPLPs can store commodities in their warehouses and deliver products to retailers at the right time if there is no available capacity in the bottler's warehouses. This problem belongs to Inventory Routing Problem (IRP) with some new features such as options for rental vehicle and TPLPs. IRP is a well-studied problem in Operation Research but most of the studies take a single period into account. In contrast, the proposed model in this study includes several time steps in which a decision in one time step can affect future time steps. The proposed model is a multi-tier, multi-plant, multi-warehouse, and multi-product model which considers non-homogeneous fleet. No model in the literature considers all of these characteristics simultaneously. In this research heuristic methods are developed to solve large problems for which optimization packages cannot find even a feasible solution. Two heuristic methods are proposed for this problem, which are based on fix-and-run algorithm. Three improvement phases are also developed to enhance the final solution of heuristics. The proposed heuristic methods in this research can find an appropriate feasible solution with only a small gap from an upper bound and in reasonable running time.