Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item First Principle Computational Study of Fast Ionic Conductors(2018) He, Xingfeng; Mo, Yifei; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Fast ionic conductors have great potential to enable novel technologies in energy storage and conversion. However, it is not yet understood why only a few materials can deliver exceptionally higher ionic conductivity than typical solids or how on can design fast ion conductors following simple principles. In this dissertation, I applied first principles computational method to understanding the fast ionic diffusion within fast ionic conductors and I demonstrated a conceptually simple framework for guiding the design of super-ionic conductor materials. I studied Na0.5Bi0.5TiO3 (NBT) as the model material for oxygen ionic conductor. The structure-property relationship of the NBT materials is established. Based on the newly gained materials understanding, our first principles computation predicted that Na and K were promising dopants to increase oxygen ionic conductivity. The newly designed NBT materials with A-site Na and K substituted A sites exhibited a many-fold increase in the ionic conductivity at 900K comparing to that in the experimental compound. We demonstrated that the concerted migration mechanism with low energy barrier is the universal mechanism of fast ionic diffusion in a broad range of ionic conducting materials. Our theory provides a conceptually simple framework for guiding the design of super-ionic conductor materials, that is, inserting mobile ions into high-energy sites to activate concerted ion conduction with lower migration barriers. We demonstrated this strategy by designing a number of novel fast Li-ion conducting materials to activate concerted migration with reduced diffusion barrier. We identified the common features of crystal structural framework for lithium SICs. Based on the determined attributes, we performed a high-throughput screening of all lithium-containing oxide and sulfide compounds. The screening revealed several crystal structures that are potential to be fast ion conductors. Through aliovalent doping, we modified the Li content of these structures which resulting in different Li sublattice within the structure and we found a number of lithium super- ionic conductors that are predicted to have Li+ conductivities greater than 0.1 mS/cm at 300K.Item An Analytical Model for Developing a Canary Device to Predict Solder Joint Fatigue Failure under Thermal Cycling Conditions(2015) Mathew, Sony; Pecht, Michael G; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Solder joint fatigue failure is a prevalent failure mechanism for electronics subjected to thermal cycling loads. The failure is attributed to the thermo-mechanical stresses in the solder joints caused by differences in the coefficient of thermal expansion of the printed circuit board (PCB), electronic component, and solder. Physics of failure models incorporate the knowledge of a product's material properties, geometry, life-cycle loading and failure mechanisms to estimate the remaining useful life of the product. Engelmaier's model is widely used in the industry to estimate the fatigue life of electronics under thermal cycling conditions. However, for leadless electronic components, the Engelmaier strain metric does not consider the solder attachment area, the solder fillet thickness, and the thickness of the PCB. In this research a first principles model to estimate the strain in the solder interconnects has been developed. This new model considers the solder attachment area, and the geometry and material properties of the solder, component and PCB respectively. The developed model is further calibrated based on the results of finite element analysis. The calibrated model is validated by comparing its results with results of testing of test assemblies under different thermal cycling loading conditions. Further, the calibrated first principles model is used to design reduced solder attachment areas for electronic components so that under the same loading conditions they fail faster than components with regular solder attachment areas. Such structures are called expendable Canary devices and can be used to predict the solder joint fatigue failure of regular electronic components in the actual field conditions. The feasibility of using a leadless chip resistor with reduced solder attachment area as a canary device to predict the failure of ball grid array (BGA) component has been proven based on testing data. Further, a methodology for the developing and implementing canary device based prognostics has been developed in this research. Practical implementation issues, including estimating the number of canary devices required, determination of appropriate prognostic distance, and failure prediction schemes that may be used in the actual field conditions have also been addressed in this research.