Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item STUDYING MANY-BODY PHYSICS WITH QUANTUM DOT QUBITS(2022) Buterakos, Donovan Lewis; Das Sarma, Sankar; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Quantum dot spin qubits are a promising platform for realizing quantum information technologies, which can theoretically perform calculations such as factoring large integers that are otherwise intractable using classical computing methods. However, quantum dot qubit technology is still in its developmental phases, with current experimental devices capable of holding only a few (less than 10) noisy qubits. Even with only a small number of quantum dots, interesting experiments can be performed, simulating physical systems and observing many-body phenomena which are otherwise difficult to study or numerically simulate classically. In the first part of this thesis, we analytically examine valley states in Silicon, which is one obstacle which can potentially lead to information loss in Silicon qubits. Using a perturbative method, we calculate the dynamics of two exchange-coupled quantum dots in which there is a valley degree of freedom. We find that the spin states can become entangled with the valley states of the system if the electrons are not initialized to the correct valley states, which can adversely affect quantum computations performed on these systems. In the second part of this thesis, we detail how quantum dot plaquettes can simulate the Hubbard model and give many analytic results for different magnetic phenomena that arise under this model. These results include examples of Nagaoka ferromagnetism, violations of Hund's rule, and situations where flatband ferromagnetic ground states are necessarily degenerate with nonferromagnetic states. These phenomena all require only a few quantum dots, and are observable with current experimental technologies.Item Combinatorial Investigation of Ferromagnetic Shape Memory Materials(2005-09-15) Famodu, Olugbenga Olawale; Takeuchi, Ichiro; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Combinatorial synthesis is research methodology which allows one to systemically study a large number of compositionally varying samples simultaneously. We apply this technique to the investigation of multifunctional materials. Different designs of combinatorial libraries and various characterization tools are implemented in order to rapidly map composition-structure-property relationships in a variety of materials systems. In this thesis, I will discuss combinatorial investigation of various shape memory alloys. We have utilized the combinatorial magnetron co-sputtering deposition technique for fabricating composition spreads of ternary alloy systems containing ferromagnetic shape memory alloys (FSMAs) and thermoelastic shape memory alloys (SMAs). Magnetic properties of the composition spreads were rapidly characterized using a room temperature scanning semiconducting quantum interference device (SQUID) microscope which provides mapping of the magnetic field emanating from different parts of the composition spreads. By applying the inversion technique to the mapping of the magnetic field distribution, we have mapped the magnetic phase diagram of the Ni-Mn-Ga and Ni-Mn-Al systems whose Heusler compositions Ni2MnGa and Ni2MnAl are well known ferromagnetic shape memory alloys (FSMAs). In addition, a rapid visual inspection technique was developed for detection of reversible martensites using arrays of micromachined cantilevers. A large, previously unexplored compositional region of FSMAs outside the Heusler composition was found. In search of novel FSMAs, we have also investigated a number of other ternary alloys systems. These systems included Ni-Mn-In, Gd-Ge-Si, Co-Mn-Ga, Ni-Fe-Al, and Co-Ni-Ga. A summary of the results from the investigation of these systems is presented. We have used the combinatorial technique to search for "ideal" SMAs with minimal hysteresis. For pursuing this, we had first set out to verify the geometric non-linear theory of martensites which predicts the conditions under which the "ideal" SMA can occur. This was facilitated by the composition spread investigation of the Ni-Ti-Cu system and the use of synchrotron x-ray microdiffraction. We found that one of the criteria prescribed by the theory for achieving minimal hysteresis is closely obeyed. We have demonstrated that we can indeed use the technique we have developed here together with the theory to explore SMAs with minimal hysteresis.