Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Investigating Metrics Proposed to Prevent the Harvest of Leafy Green Crops Contaminated by Floodwater
    (2015) Callahan, Mary Theresa; Buchanan, Robert L; Food Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Pathogens can be transported by water through soil to contaminate distant crops. The California LGMA states that leafy green crops within 30ft of flooded soil should be destroyed due to potential contamination. Previously flooded areas should not be replanted for 60 days. This study investigated the transport of Salmonella enterica and Citrobacter freundii through soil in a model system with a positive slope (uphill). Field trials involving flooding one end of a spinach bed with a negative slope (downhill) with water containing Escherichia coli were also conducted. Soil type, soil moisture content, and slope affected bacterial movement. In field trials, E. coli was quickly transported to the 30ft boundary, and persisted significantly longer in the fall trial than the spring. These data suggest the LGMA metrics need to provide additional parameters to prevent the harvest of leafy green crops potentially contaminated by floodwater.
  • Thumbnail Image
    Item
    Immunopotency of a novel catanionic surfactant vesicle vaccine for bovine mastitis
    (2014) Vasudevan, Prarthana; Stein, Daniel C; Cell Biology & Molecular Genetics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    17-20% of the world's cows have had bovine mastitis at some point in their lives. Mastitis is the inflammation of mammary glands caused by infection, such as by the bacterium Escherichia coli. The focus of this thesis research is the immunopotency of a novel catanionic surfactant vesicle vaccine for E. coli mastitis that could theoretically resemble an `artificial pathogen.' To this end, serum studies analyzing antibody titers and immunogenic profiles were conducted. These studies demonstrate that there was no significant increase in total E. coli specific-IgG in vaccinated cows post-vaccination and that there may be variation in immunogenic profiles post-vaccination.
  • Thumbnail Image
    Item
    Intervention Strategies for Escherichia coli O157:H7 and Salmonella in Organic Soil and on Fresh Produce
    (2012) Nguekam Yossa, Irene Nadine; Lo, Martin; Food Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Recently, foodborne diseases caused by Escherichia coli O157:H7 and Salmonella have been increasingly associated with the consumption of fresh produce. Consumers' demand for safe, natural products has led to research on natural antimicrobials for effective control of foodborne pathogens on fresh produce, which can be inadvertently contaminated by soil. Therefore, there is a need to control microbial loads in soil to minimize contamination. The objectives of this study were to evaluate the antimicrobial activity of cinnamaldehyde, Ecotrol®, eugenol, Sporan® and acetic acid against E. coli O157:H7 and Salmonella in organic soil, and to evaluate the antimicrobial effects of cinnamaldehyde and Sporan® alone, or in combination with acetic acid against E. coli O157:H7, Salmonella, and the native microflora of iceberg, romaine and spinach leaves. The quality parameters of the treated fresh produce were monitored, whereas the modes of action of cinnamaldehyde and Sporan® were investigated. The results showed that cinnamaldehyde had the highest bactericidal activity against E. coli O157:H7 and Salmonella in organic soil. Increases in oil concentration resulted in further reduction of both microorganisms. Up to 5 and 6 log CFU/g of E. coli O157:H7 and Salmonella, respectively, were reduced with 2% Sporan® and acetic acid after 24 h. Sporan® in combination with acetic acid (1000SV) and 800 ppm cinnamaldehyde-Tween reduced significantly E. coli O157:H7 (~3 log CFU/g) on iceberg and spinach leaves following treatment at day 0. Likewise, 1000SV treatment reduced Salmonella ~ 2.5 log CFU/g at day 0. E. coli O157:H7 and Salmonella populations in treated iceberg, spinach and romaine leaves were reduced during storage at 4°C. The native microflora of untreated and treated spinach and lettuce leaves increased during the storage time. The texture and the color of iceberg, romaine and spinach leaves treated with essential oils were not significantly different from the control lettuce after 14 days. The scanning and transmission electron microscopy of oil-treated bacterial cells indicated possible cell structural damage and leakage of cellular content. This study shows the potential use of essential oils to effectively reduce E. coli O157:H7 and Salmonella populations in soil and on fresh produce without adversely affecting leaf color and texture.
  • Thumbnail Image
    Item
    Evaluation of the transcription of small RNA SgrS and glucose transporter mRNA ptsG in E. coli B and E. coli K cultures under high glucose conditions
    (2009) Ng, Weng Ian; Wang, Nam Sun; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Escherichia coli is commonly used as the production system for recombinant proteins. However, acetate accumulation in fermentation affects cell growth and protein yield. Recent studies have showed that the small RNA SgrS regulates the major glucose transporter mRNA ptsG in a post–transcriptional manner when the metabolic intermediate glucose–6–phosphate is accumulated intracellularly in E. coli K. Here, comparative analysis of the transcription of SgrS and ptsG is performed between E. coli B and E. coli K cultures in both shake flasks and bioreactor. Both strains expressed SgrS when grown on the non–metabolizable glucose analog α–methyl–glucoside. However, under high glucose conditions, only E. coli B showed significant expression of SgrS. This behavior is unaffected by oxygen supply and pH control. E. coli B produced less acetate on glucose than E. coli K in the bioreactor settings. This provides evidence of a possible connection between SgrS and acetate production in aerobic fermentation of E. coli.