Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item Dynamic Modeling of Vapor Compression Systems for Residential Heat Pump Applications with Alternative Low-GWP Refrigerants(2015) Bhanot, Viren; Hwang, Yunho; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)With the increased focus on reducing greenhouse gas emissions, low-GWP refrigerants, R32 and D2Y60, have been proposed as drop-in replacements for R410A in residential heat pumps. This thesis presents the development of a modeling framework in Simulink® for the dynamic simulations of such residential heat pumps. The framework is component-based, allowing arbitrary cycle configurations, and includes most of the relevant components. Finite-volume method has been applied to the heat exchanger. Compression and expansion processes are treated as quasi-steady state. The framework has been used to study the performance of the system using the baseline refrigerant and charge-optimized alternatives at ASHRAE test conditions, and the results have been compared against experimental data. Steady-state COP values fall within ±8% of experimental data. For the cyclic tests, the pressure and temperature behaviors compare well and accumulated capacity and power consumption errors are found to be within ±9%. Relative differences between the refrigerants are consistent between simulations and measurements. The framework shows potential for being used to simulate the operation of residential heat pumps under dynamic conditions.Item Scalable Fast Multipole Methods on Heterogeneous Architecture(2013) Hu, Qi; Duraiswami, Ramani; Gumerov, Nail A.; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The N-body problem appears in many computational physics simulations. At each time step the computation involves an all-pairs sum whose complexity is quadratic, followed by an update of particle positions. This cost means that it is not practical to solve such dynamic N-body problems on large scale. To improve this situation, we use both algorithmic and hardware approaches. Our algorithmic approach is to use the Fast Multipole Method (FMM), which is a divide-and-conquer algorithm that performs a fast N-body sum using a spatial decomposition and is often used in a time-stepping or iterative loop, to reduce such quadratic complexity to linear with guaranteed accuracy. Our hardware approach is to use heterogeneous clusters, which comprised of nodes that contain multi-core CPUs tightly coupled with accelerators, such as graphics processors unit (GPU) as our underline parallel processing hardware, on which efficient implementations require highly non-trivial re-designed algorithms. In this dissertation, we fundamentally reconsider the FMM algorithms on heterogeneous architectures to achieve a significant improvement over recent/previous implementations in literature and to make the algorithm ready for use as a workhorse simulation tool for both time-dependent vortex flow problems and for boundary element methods. Our major contributions include: 1. Novel FMM data structures using parallel construction algorithms for dynamic problems. 2. A fast hetegenenous FMM algorithm for both single and multiple computing nodes. 3. An efficient inter-node communication management using fast parallel data structures. 4. A scalable FMM algorithm using novel Helmholz decomposition for Vortex Methods (VM). The proposed algorithms can handle non-uniform distributions with irregular partition shapes to achieve workload balance and their MPI-CUDA implementations are highly tuned up and demonstrate the state of the art performances.