Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    BREAKWATER – Breaking the Cycle
    (2024) Mora, Adrian Bernard Teneza; Gabrielli, Julie; Architecture; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    How can ecological design principles prevent the erosion of the physical and social framework of low-income coastal communities? A significant portion of the world’s population is concentrated along coastlines. Direct access to the water provides access to a longstanding source of economic prosperity and a psychological connection to natural environments. However, human-influenced climate change has produced hazardous environmental conditions that threaten coastal populations, including many poor, vulnerable communities. Disparities in investment for public services, maintenance, and upkeep increases the vulnerability of these disenfranchised groups that cannot protect themselves. The built and natural environment within this diverse boundary zone between the land and sea must be redeveloped as a self-resilient ecosystem that can protect its inhabitants from climate-induced hazards. This renewal will require holistic approaches that can mitigate contemporary impacts to protect current populations at risk and adapt the built environment to better respond in the future.
  • Thumbnail Image
    Item
    MEGAPOOLS: VEGETATION DIEBACK AND RESTORATION POTENTIAL OF A DITCHED COASTAL SALT MARSH
    (2023) Stahl, Katherine A.; Baldwin, Andrew H; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In many ditched coastal salt marshes, megapools, or large ponded areas of vegetation dieback,have formed. In combination with sea level rise, this interior marsh loss can decrease wildlife habitat suitability, resilience to storms, and other ecosystem services. However, mechanisms of megapool formation are poorly understood, hampering restoration efforts. Here, we explored differences in environmental characteristics between megapools in different stages of formation (Fully Formed, Partially Formed and Nonformed/Control) and between Elevations within megapools (High, Medium, Low). Using IRIS Films (Indicator of Reduction in Soil), we found that Fully Formed megapools had higher sulfide concentrations than Partially formed, which in turn were greater than Nonformed megapools. We additionally found that lower elevations correlated with higher sulfides, lower plant coverage, lower belowground biomass, lower Carbon Density, and predicted megapool type. We noted that in terms of elevation, vegetative cover, and biomass, Nonformed and Partially formed were more similar as were High and Medium elevations. Whereas in terms of soil characteristics, Fully Formed and Partially formed were more similar as were Medium and Low Elevations. To combat megapools and dieback, we will assess the effectiveness of two restoration techniques, the first of which is assessing the survival and growth of plantings at different spacings, elevations, and megapool formation levels. We found survival and growth was higher in Partially formed megapools than Fully formed, and no impact by spacing or elevation. Our second restoration technique is runnels, or 15” channels that reconnect megapools to ditches, which were installed in January of 2023. The data collected above will act as baseline data, repeated again. These baseline results support a close relationship between pool stages of formation, carbon storage, elevation, vegetation health, biomass production, and sulfide levels (Graphical Abstract).