Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item Advanced Modeling Using Land-use History and Remote Sensing to Improve Projections of Terrestrial Carbon Dynamics(2021) Ma, Lei; Hurtt, George; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Quantifying, attributing, and projecting terrestrial carbon dynamics can provide valuable information in support of climate mitigation policy to limit global warming to 1.5 °C. Current modeling efforts still involve considerable uncertainties, due in part to knowledge gaps regarding efficient and accurate scaling of individual-scale ecological processes to large-scale dynamics and contemporary ecosystem conditions (e.g., successional states and carbon storage), which present strong spatial heterogeneity. To address these gaps, this research aims to leverage decadal advances in land-use modeling, remote sensing, and ecosystem modeling to improve the projection of terrestrial carbon dynamics at various temporal and spatial scales. Specifically, this research examines the role of land-use modeling and lidar observations in determining contemporary ecosystem conditions, especially in forest, using the latest land-use change dataset, developed as the standard forcing for CMIP6, and observations from both airborne lidar and two state-of-the-art NASA spaceborne lidarmissions, GEDI and ICESat-2. Both land-use change dataset and lidar observations are used to initialize a newly developed global version of the ecosystem demography (ED) model, an individual-based forest model with unique capabilities to characterize fine-scale processes and efficiently scale them to larger dynamics. Evaluations against multiple benchmarking datasets suggest that the incorporation of land-use modeling into the ED model can reproduce the observed spatial pattern of vegetation distribution, carbon dynamics, and forest structure as well as the temporal dynamics in carbon fluxes in response to climate change, increased CO2, and land-use change. Further, the incorporation of lidar observations into ED, largely enhances the model’s ability to characterize carbon dynamics at fine spatial resolutions (e.g., 90 m and 1 km). Combining global ED model, land-use modeling and lidar observation together can has great potential to improve projections of future terrestrial carbon dynamics in response to climate change and land-use change.Item Effects of Salinization on Base Cation, Nutrient, Carbon, and Trace Metal Biogeochemistry in Human-Impacted Rivers in the Eastern US(2018) Haq, Shahan; Kaushal, Sujay S; Geology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Urbanized watersheds in colder climates experience episodic salinization due to anthropogenic salt inputs and runoff from impervious surfaces. We conducted laboratory experiments and analyzed high-frequency sensor data to investigate the water quality impacts of freshwater episodic salinization across 12 watersheds draining two major metropolitan regions along the U.S. East Coast. Sediments from watersheds spanning land use gradients were incubated across a range of replicated salinity treatments (0–10 g/L sodium chloride). Our results suggested that episodic salinization can mobilize base cations, nutrients, and trace metals to streams through accelerated ion exchange and biogeochemical processes induced by shifting pH ranges and ionic strength. The response of dissolved carbon concentrations to experimental salinization varied between sites, and dissolved silica did not show any significant response. The growing impacts of freshwater salinization syndrome on nutrient mobilization, shifting acid–base status, and augmenting eutrophication warrant serious consideration in water quality management.