Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A CAUSAL INFORMATION FUSION MODEL FOR ASSESSING PIPELINE INTEGRITY IN THE PRESENCE OF GROUND MOVEMENT
    (2024) Schell, Colin Andrew; Groth, Katrina M; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Pipelines are the primary transportation method for natural gas and oil in the United States making them critical infrastructure to maintain. However, ground movement hazards, such as landslides and ground subsidence, can deform pipelines and potentially lead to the release of hazardous materials. According to the Pipeline and Hazardous Materials Safety Administration (PHMSA), from 2004 to 2023, ground movement related pipeline failures resulted in $413M USD in damages. The dynamic nature of ground movement makes it necessary to collect pipeline and ground monitoring data and to actively model and predict pipeline integrity. Conventional stress-based methods struggle to predict pipeline failure in the presence of large longitudinal strains that result from ground movement. This has prompted many industry analysts to use strain-based design and assessment (SBDA) methods to manage pipeline integrity in the presence of ground movement. However, due to the complexity of ground movement hazards and their variable effects on pipeline deformation, current strain-based pipeline integrity models are only applicable in specific ground movement scenarios and cannot synthesize complementary data sources. This makes it costly and time-consuming for pipeline companies to protect their pipeline network from ground movement hazards. To close these gaps, this research made significant steps towards the development of a causal information fusion model for assessing pipeline integrity in a variety of ground movement scenarios that result in permanent ground deformation. We developed a causal framework that categorizes and describes how different risk-influencing factors (RIFs) affect pipeline reliability using academic literature, joint industry projects, PHMSA projects, pipeline data, and input from engineering experts. This framework was the foundation of the information fusion model which leverages SBDA methods, Bayesian network (BN) models, pipeline monitoring data, and ground monitoring data to calculate the probability of failure and the additional longitudinal strain needed to fail the pipeline. The information fusion model was then applied to several case studies with different contexts and data to compare model-based recommendations to the actions taken by decision makers. In these case studies, the proposed model leveraged the full extent of data available at each site and produced similar conclusions to those made by decision makers. These results demonstrate that the model could be used in a variety of ground movement scenarios that result in permanent ground deformation and exemplified the comprehensive insights that come from using an information fusion approach for assessing pipeline integrity. The proposed model lays the foundation for the development of advanced decision making tools that can enable operators to identify at-risk pipeline segments that require site specific integrity assessments and efficiently manage the reliability of their pipelines in the presence of ground movement.
  • Thumbnail Image
    Item
    MEASURING LEARNING PROGRESSIONS USING BAYESIAN MODELING IN COMPLEX ASSESSMENTS
    (2011) Rutstein, Daisy Wise; Mislevy, Robert J.; Measurement, Statistics and Evaluation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case of using a BIN to measure one LP, while the items in the second study are designed to measure two LPs. For each study, data are generated under four alternative models, and each of the models is fit to the data. The results are compared in terms of fit, parameter recovery, and classification accuracy for individuals. In the case where one LP was used, two models provided high correct classification rates. When two LPs are being measured the classification rates were not found to be high, although an unconstrained model with freely-estimated conditional probabilities had slightly higher rates than a constrained model in which the conditional probabilities were given by lower-dimensional functions. Overall, while BIN show promise in modeling LPs, further research is needed to determine the conditions under which this modeling approach is appropriate.