Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Characterization and applications of FeGa/PZT multiferroic cantilevers
    (2014) Wang, Yi; Takeuchi, Ichiro; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Multiferroic materials and structures, which possess two or more ferroic properties, have been widely investigated because of their ability to transfer one different form of signals. The magnetoelectric (ME) effect, which results in induced voltage under applied magnetic field, makes multiferroic materials promising in applications for new types of transducers, sensors, and information storage devices. The laminated bulk composite multiferric devices had attracted a lot of attention because of their high ME coefficients, which define the strength of ME coupling. We fabricated mechanically-resonant ME devices by depositing magnetostrictive FeGa and piezoelectric PZT thin films on Si cantilevers. Various sized cantilevers were found to exhibit different behaviors. With a 1 Oe AC magnetic driving field HAC, the small cantilever (0.95 mm × 0.2 mm × 5 μm) shows a high ME coefficient (33 V/(cm×Oe)) with a bias DC magnetic field of 66.1 Oe at the resonant frequency fr of 3833 Hz in vacuum. We found that the fr of the small cantilever continuously shifts with the bias magnetic field. A magnetic cantilever theory was used to explain this shift. In addition, we are able to demonstrate application of magnetic cantilevers in AC magnetic energy harvesters with an efficiency of 0.7 mW/cm3. By driving the cantilever into the nonlinear regime with an AC magnetic field larger than 3 Oe or AC electric field larger than 5 mV, we are able to demonstrate its application in a robust multi-mode memory device based on bistable solutions of the Duffing oscillation. We can use the driving frequency, the driving amplitude, DC magnetic field, or DC electric field as the input, and use bistable vibration amplitudes of the device as the output. We also show that parametric amplification can be used to substantially increase the ME coefficient by adding a pump voltage on the PZT layer. The parametric gain is sensitive to both the phase of pumping signal and the phase of the driving signal. The gain diverges as the pump voltage approaches the threshold. With parametric amplification, the ME coefficient can be boosted to a value as large as 2×106 V/(cm×Oe) from 33 V/(cm×Oe).
  • Thumbnail Image
    Item
    Direct Numerical Simulation of Non-premixed Combustion with Soot and Thermal Radiation
    (2005-07-14) Wang, Yi; Trouve, Arnaud; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Direct numerical simulation (DNS) is a productive research tool in combustion science used to provide high-fidelity computer-based observations of the micro-physics in turbulent reacting flows. It is also a unique tool for the development and validation of reduced model descriptions used in macro-scale simulations of engineering-level systems. Because of its high demand of computational power, current state-of-the-art DNS remains limited to small computational domains, small Reynolds numbers, and simplified problems corresponding to adiabatic, non-sooting, gaseous flames in simple geometries. This Ph.D. study is part of a multi-institution collaborative research project aimed at using terascale technology to overcome many of the current DNS limitations. Two different tracks are followed in the present work: a DNS development track, and a DNS production track corresponding to a study of flame-wall interactions. Due to project management issues, the two tracks remain separate in this work. In the first track, we develop numerical and physical models to enhance the capability of our fully compressible DNS solver for turbulent combustion. The Acoustic Speed Reduction (ASR) method is a new perturbation method designed to reduce the stiffness associated with acoustic waves found in slow flow simulations and to thereby enhance computational efficiency. The Navier-Stokes Characteristic Boundary Conditions (NSCBC) are modified to allow for successful simulations of turbulent counterflow flames. In addition, a semi-empirical soot model and a parallel thermal radiation model based on a ray-tracing method are developed and implemented into our DNS code. All the models are validated, showing that the capability of our DNS tool is greatly enhanced. In the second track, we perform a DNS study of non-premixed flame-wall interactions. The structure of the simulated wall flames is studied in terms of a classical fuel-air-based mixture fraction and a new variable, called the excess enthalpy variable, which characterizes deviations from adiabatic behavior. Using the excess enthalpy variable, a modified flame extinction criterion is proposed and tested against DNS data. While beyond the scope of this Ph.D. thesis, it is expected that follow-up studies of flame-wall interactions will take advantage of the new DNS software features developed in the first track of the present work.