Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Language-Based Techniques for Secure Programming
    (2022) Sweet, Ian Nicholas; Hicks, Michael; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Secure Computation (SC) encompasses many different cryptographic techniques for computing over encrypted data. In particular, Secure Multiparty Computation enables multiple parties to jointly compute a function over their secret inputs. MPC languages offer programmers a familiar environment in which to express their programs, but fall short when confronted with problems that require flexible coordination. More broadly, SC languages do not protect non-expert programmers from violating obliviousness or expected bounds on information leakage. We aim to show that secure programming can be made safer through language-based techniques for expressive, coordinated MPC; probabilistically oblivious execution; and quantitative analysis of information flow. We begin by presenting Symphony, an expressive MPC language that provides flexible coordination of many parties, which has been used to implement the secure shuffle of Laur, Willemson, and Zhang. Next, we present λObliv, a core language guaranteeing that well-typed programs are probabilistically oblivious, which has been used to type check tree-based, nonrecursive ORAM (NORAM). Finally, we present a novel application of dynamic analysis techniques to an existing system for enforcing bounds on information leakage, providing a better balance of precision and performance.