Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Insulating Materials for an Extreme Environment in a Supersonically Rotating Fusion Plasma
    (2024) Schwartz, Nick Raoul; Koeth, Timothy W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Fusion energy has long been sought as the “holy grail” of energy sources. One of the most critical remaining challenges in fusion is that of plasma-facing materials, even denoted by the National Academies of Science. The materials challenge is particularly acute for centrifugal mirrors, an alternative concept to the industry-standard tokamak that may offer a more efficient scheme with a faster path to development. The centrifugal mirror incorporates supersonic rotation into a conventional magnetic mirror scheme, providing three primary benefits: (1) increased confinement, (2) suppression of instabilities, and (3) plasma heating through shear flow. However, this rotation, which is driven by an axial magnetic field and a radial electric field, requires the magnetic field lines to terminate on electrically insulating surfaces to avoid “shorting” the plasma. This unique requirement presents a novel materials challenge: the insulator must not only resist irradiation and thermal damage, but also be an excellent electrical insulator and thermal conductor that can be actively cooled. To address this materials challenge, the Centrifugal Mirror Fusion Experiment (CMFX) was developed at the University of Maryland. CMFX serves as a test bed for electrically insulating materials in a fusion environment, as well as a proof-of-concept for the centrifugal mirror scheme. To guide the design of future power plants and better understand the neutronand ion flux on the insulators, a zero-dimensional (0-D) scoping tool, called MCTrans++, was developed. This software, discussed in Chapter 2, demonstrates the ability to rapidly model experimental parameter sets in CMFX and predict the scaling to larger devices, informing material selection and design. Assuming the engineering challenges have been met, the centrifugal mirror has been demonstrated as a promising scheme for electricity production via fusion energy. One of the key aspects to the operation of CMFX is the high voltage system. This system, discussed in Chapter 3, was developed in incremental stages, beginning with a 20 kV, then 50 kV pulsed power configuration, and finally culminating in a 100 kV direct current power supply to drive rotation at much higher voltages, creating an extreme environment for materials testing. This work identified hexagonal boron nitride (hBN) as a promising insulator material. Computational modeling (Chapter 4) demonstrated hBN’s superior resistance to ion-irradiation damage compared to other plasma-facing materials. Additionally, fusion neutrons are crucial for assessing both material damage and power output. Chapter 5 details the neutronics for CMFX, including 3He proportional counters, which have been installed on CMFX to measure neutron production. In parallel, Monte Carlo computational methods were used to predict neutron transport and material damage in the experiment. Ultimately, a materials test stand was installed on CMFX to expose electrically insulating materials to high energy fusion plasmas (Chapter 6). Comparative analysis of hBN and silicon carbide after exposure revealed superior performance of hBN as a plasma-facing material. Two primary erosion mechanisms were identified by surface morphology and roughness measurements: grain ejection and sputtering, both more pronounced in silicon carbide. This work advances our understanding of insulating material behavior in fusion environments and paves the way for the development of the next-generation centrifugal mirror fusion reactors. Chapter 7 discusses conclusions and proposes future work. In particular this section suggests some changes that may allow CMFX to operate at much higher voltages, unlocking higher plasma density and temperature regimes for further material testing.