Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    SEMIPARAMETRIC METHODS IN THE ESTIMATION OF TAIL PROBABILITIES AND EXTREME QUANTILES
    (2016) Pan, Lemeng; Kedem, Benjamin; Mathematical Statistics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In quantitative risk analysis, the problem of estimating small threshold exceedance probabilities and extreme quantiles arise ubiquitously in bio-surveillance, economics, natural disaster insurance actuary, quality control schemes, etc. A useful way to make an assessment of extreme events is to estimate the probabilities of exceeding large threshold values and extreme quantiles judged by interested authorities. Such information regarding extremes serves as essential guidance to interested authorities in decision making processes. However, in such a context, data are usually skewed in nature, and the rarity of exceedance of large threshold implies large fluctuations in the distribution's upper tail, precisely where the accuracy is desired mostly. Extreme Value Theory (EVT) is a branch of statistics that characterizes the behavior of upper or lower tails of probability distributions. However, existing methods in EVT for the estimation of small threshold exceedance probabilities and extreme quantiles often lead to poor predictive performance in cases where the underlying sample is not large enough or does not contain values in the distribution's tail. In this dissertation, we shall be concerned with an out of sample semiparametric (SP) method for the estimation of small threshold probabilities and extreme quantiles. The proposed SP method for interval estimation calls for the fusion or integration of a given data sample with external computer generated independent samples. Since more data are used, real as well as artificial, under certain conditions the method produces relatively short yet reliable confidence intervals for small exceedance probabilities and extreme quantiles.