Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    THE PROBIOTICS OF BIOFUEL: A METAGENOMIC STUDY OF MICROALGAE GROWN FOR FUEL PRODUCTION
    (2018) Major, Samuel; Hill, Russell T; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Ponds in Frederick, MD were fertilized with chicken manure to increase the nutrient load in the water and stimulate microalgal growth. Nutrient analyses indicate that fertilization results in significant increases in the DOC, TDN, and TDP. The bacterial and eukaryotic microalgal communities were analyzed using 16S and 18S rRNA gene sequencing, respectively. Communities were analyzed pre-fertilization and for 15 days following fertilization. Molecular data reveals a decrease in diversity as microalgal blooms form. The microalgal density increased following fertilization, with enrichment for the Chlamydomonadales order. Prior to fertilization the bacterial communities were dominated by five phyla: Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, and Verrucomicrobia. Dominant bacterial genera post-fertilization included Flavobacterium, Limnohabitans, and Polynucleobacter. Bacteria isolated from the ponds were screened for effects on Scenedesmus sp. HTB1 to identify bacteria that either enhance or inhibit microalgal growth. The growth-promoting bacteria were closely related to bacteria found to be enriched during microalgal bloom formation.