Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    LOCAL AND TOP-DOWN REGULATION OF OLFACTORY BULB CIRCUITS
    (2020) Hu, Ruilong; Araneda, Ricardo C; Neuroscience and Cognitive Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The olfactory bulb (OB) is the first place in the brain where chemosensory processing occurs. The neurophysiological mechanisms underlying these processes are mostly driven by inhibition, which is implemented by a large population of local inhibitory neurons, and among them, the granule cell (GCs) is the most prominent type. Local inhibitory interneurons sculpt the coding of output neurons, affecting odor detection, discrimination, and learning. Therefore, the regulation of inhibitory circuits is critical to OB function and fine-tuning OB output. Specifically, inhibitory tone in the OB can be regulated by the dynamic interactions between cell-intrinsic factors affecting neuronal excitability and extrinsic top-down modulation associated with an animal’s behavioral state. Here, I provide new evidence for intrinsic mechanisms governing inhibitory interneuron excitability in the OB and how modulation by noradrenaline works in concert with these intrinsic mechanisms to affect circuit function. This work highlights circuit- and cell-specific differences in noradrenergic modulation with regards to short- and long-term plasticity within OB circuits.