Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    COMPARISON OF WASTE HEAT DRIVEN AND ELECTRICALLY DRIVEN COOLING SYSTEMS FOR A HIGH AMBIENT TEMPERATURE, OFF-GRID APPLICATION
    (2012) Horvath, Christopher Philip; Radermacher, Reinhard; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Forward army bases in off-grid locations with high temperatures require power and cooling capacity. Each gallon of fuel providing electrical power passes through a complex network, introducing issues of safety and reliability if this network is interrupted. Instead of using an engine and an electrically powered cooling system, a more efficient combined heat and power (CHP) configuration with a smaller engine and LiBr/Water absorption system (AS) powered by waste heat could be used. These two configurations were simulated in both steady state and transient conditions, in ambient temperatures up to 52°C, providing up to 3 kW of non-cooling electricity, and 5.3 kW of cooling. Unlike conventional AS's which crystallize at high temperatures and use bulky cooling towers, the proposed AS's avoid crystallization and have air-cooled HXs for portability. For the hottest transient week, the results showed fuel savings of 34-37%, weight reduction of 11-19%, and a volumetric footprint 3-10% smaller.