Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    EXTRINSIC CHANNEL-LIKE FINGERPRINT EMBEDDING FOR TRANSMITTER AUTHENTICATION IN WIRELESS SYSTEMS
    (2011) Goergen, Nathan Scott; Liu, K.J.Ray; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We present a physical-layer fingerprint-embedding scheme for wireless signals, focusing on multiple input multiple output (MIMO) and orthogonal frequency division multiplexing (OFDM) transmissions, where the fingerprint signal conveys a low capacity communication suitable for authenticating the transmission and further facilitating secure communications. Our system strives to embed the fingerprint message into the noise subspace of the channel estimates obtained by the receiver, using a number of signal spreading techniques. When side information of channel state is known and leveraged by the transmitter, the performance of the fingerprint embedding can be improved. When channel state information is not known, blind spreading techniques are applied. The fingerprint message is only visible to aware receivers who explicitly preform detection of the signal, but is invisible to receivers employing typical channel equalization. A taxonomy of overlay designs is discussed and these designs are explored through experiment using time-varying channel-state information (CSI) recorded from IEEE802.16e Mobile WiMax base stations. The performance of the fingerprint signal as received by a WiMax subscriber is demonstrated using CSI measurements derived from the downlink signal. Detection performance for the digital fingerprint message in time-varying channel conditions is also presented via simulation.