Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Structural Variants of AI-2 Analogs to Probe Quorum Sensing in Diverse Bacteria
    (2011) Gamby, Sonja Josette; Sintim, Herman O.; Master of Life Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Bacterial infections which were once easily managed with antibiotics are now reemerging as a serious threat to human health. The difficulty in managing infectious diseases is arising out of bacterial resistance to front line antibiotics. A new paradigm for fighting bacterial infection via the inhibition of quorum sensing has emerged. Quorum sensing is the process by which small diffusible molecules (autoinducers) are used to sense population density and upregulate genes. Notably, genes for virulence production and biofilm formation have been found to be controlled by this process. Thus, quorum sensing, offers an alternative target for the treatment of bacterial infections. One autoinducer which has been identified across many bacterial species is AI-2. The goals of this thesis were to make more hydrolytically stable analogs of AI-2 as potent inhibitors of quorum sensing, as well as, exploring the effects of AI-2 analogs on QS in P. aeruginosa. In this study, the processing of bis ester protected AI-2 analogs was examined. Also, two long chain AI-2 analogs were synthesized and tested for their ability to inhibit QS in P.aeruginosa. It was found that bis protected analogs are processed different across bacterial species. Also, long chain AI-2 analogs were found to be inhibitors of QS in P. aeruginosa, specifically, by inhibiting a LasR receptor which typically responds to a different class of autoinducer.