Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    A Scaled Equation of State for the Liquid-Liquid Critical Point in Supercooled Water
    (2007-09-14) Fuentevilla, Daphne Anne; Anisimov, Mikhail A; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The second-critical-point scenario is one of the most popular explanations for the anomalous behavior of supercooled liquid water. According to this scenario, liquid water at ambient conditions is a "supercritical" ?uid that separates into two types of liquid water in the supercooled region. However, experimental confirmation is challenging. In this work we developed a scaled parametric equation of state, based on the principle of critical-point universality, to examine the second-critical-point scenario from a new direction. The equation of state, built on the growing evidence for liquid-liquid water separation, is universal in terms of theoretical scaling fields and belongs to the Ising-model universality class. The theoretical scaling fields are postulated to be analytical combinations of the physical fields, pressure and temperature. The equation of state enables us to accurately locate the "Widom line" (locus of stability minima) and determine that the critical pressure is considerably lower than predicted by computer simulations.