Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    LAMINAR SMOKE POINTS OF COFLOWING DIFFUSION FLAMES IN MICROGRAVITY
    (2012) DeBold, Thomas; Sunderland, Peter B; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Nonbuoyant laminar jet diffusion flames in coflowing air were observed aboard the International Space Station with an emphasis on laminar smoke points. The tests extended the 2009 Smoke Points In Coflow Experiment (SPICE) experiment to new fuels and burner diameters. Smoke points were found for methane, ethane, ethylene, and propane burning in air. Conditions included burner diameters of 0.76, 1.6, 2.1, and 3.2 mm and coflow velocities of 3.0 - 47 cm/s. This study yielded 57 new smoke points to increase the total number of smoke points observed to 112. Smoke point lengths were found to scale with burner diameter raised to the -0.67 power times coflow velocity raised to the 0.27 power. Sooting propensity was observed to rank according to methane < ethane < ethylene < propane < 50% propylene < 75% propylene < propylene. This agrees with past normal gravity measurements except for the exchanged positions of ethylene and propane. This is the first time a laminar smoke point has been observed for methane at atmospheric pressure.