Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Messenger RNA Destabilization by -1 Programmed Ribosomal Frameshifting
    (2012) Belew, Ashton Trey; Dinman, Jonathan D; Cell Biology & Molecular Genetics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Although first discovered in viruses, previous studies have identified programmed -1 ribosomal frameshifting (-1 PRF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. This work improves and extends the computational methods used to search for potential -1 PRF signals. It continues to examine four yeast -1 PRF signals and show that they promote significant mRNA destabilization through the nonsense mediated (NMD) and no-go (NGD) decay pathways. Yeast EST2 mRNA is highly unstable and contains up to five -1 PRF signals. Ablation of the -1 PRF signals or of NMD stabilizes this mRNA. These same computational methods identified an operational programmed -1 ribosomal frameshift (-1 PRF) signal in the human mRNA encoding CCR5. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay (NMD) pathway. CCR5-mediated -1 PRF is stimulated by at least two miRNAs, one of which is shown to directly interact with the CCR5 -1 PRF signal. Structural analyses reveal a complex and dynamic mRNA structure in the -1 PRF signal, suggesting structural plasticity as the underlying biophysical basis for regulation of -1 PRF.