Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Electron Acceleration during Macroscale Non-Relativistic Magnetic Reconnection
    (2021) Arnold, Harry; Drake, James; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In this thesis we developed the new model {\it kglobal} for the purpose of studying nonthermal electron acceleration in macroscale magnetic reconnection. Unlike PIC codes we can simulate macroscale domains, and unlike MHD codes we can simulate particles that feedback onto the fluids so that the total energy of the system is conserved. This has never been done before. We have benchmarked the model by simulating Alfv\'en waves with electron pressure anisotropy, the growth of the firehose instability, and the growth of electron acoustic waves. We then studied the results of magnetic reconnection and found clear power-law tails that can extend for more than two decades in energy with a power-law index that decreases with the strength of the guide field. Reconnection in systems with guide fields approaching unity produce practically no nonthermal electrons. For weak guide fields the model is extremely efficient in producing nonthermal electrons. The nonthermals contain up to $\sim80\%$ of the electron energy in our lowest guide field simulation. These results are generally consistent with flare observations and specifically the measurements of the September 10, 2017, flare.