Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Firebrand Pile Thermal Characterization and Ignition Study of Firebrand Exposed Western Red Cedar
    (2021) Alascio, Joseph Anthony; Stoliarov, Stanislav I; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Over the past several decades, the severity of wildfires across the world has grown, resulting in increased number of structures in the Wildland–Urban Interface being destroyed, and lives lost. An ignition pathway that has been identified to contribute to most structures destroyed during a wildland fire is that of firebrand ignition. Firebrands are small burning pieces of vegetative material that are lofted ahead of the fire front. This study seeks to quantify thermal conditions experienced by building materials exposed to accumulated firebrands and to identify conditions that lead to ignition of these materials. A bench scale wind tunnel was used to house a decking material, western red cedar, on which the firebrands were deposited, which allowed for testing at different air flow velocities, while simultaneously analyzing the temperature of the solid substrate and gaseous exhaust flow constituents to identify trends in flaming and smoldering combustion. Higher peak temperatures and larger heating rates were found with the exposure of a higher air flow velocity. An increased air flow velocity also allowed for quicker, more frequent, and longer sustained flaming of the firebrand pile. A Modified Combustion Efficiency (MCE) value of 0.81 ± 0.02 for the firebrand pile across all testing conditions was quantified, which is indicative of a hybrid–smoldering/flaming combustion mode.