Computer Science Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2756

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Approximation Algorithms for Geometric Clustering and Touring Problems
    (2018) Bercea, Ioana Oriana; Khuller, Samir; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Clustering and touring are two fundamental topics in optimization that have been studied extensively and have ``launched a thousand ships''. In this thesis, we study variants of these problems for Euclidean instances, in which clusters often correspond to sensors that are required to cover, measure or localize targets and tours need to visit locations for the purpose of item delivery or data collection. In the first part of the thesis, we focus on the task of sensor placement for environments in which localization is a necessity and in which its quality depends on the relative angle between the target and the pair of sensors observing it. We formulate a new coverage constraint that bounds this angle and consider the problem of placing a small number of sensors that satisfy it in addition to classical ones such as proximity and line-of-sight visibility. We present a general framework that chooses a small number of sensors and approximates the coverage constraint to arbitrary precision. In the second part of the thesis, we consider the task of collecting data from a set of sensors by getting close to them. This corresponds to a well-known generalization of the Traveling Salesman Problem (TSP) called TSP with Neighborhoods, in which we want to compute a shortest tour that visits at least one point from each unit disk centered at a sensor. One approach is based on an observation that relates the optimal solution with the optimal TSP on the sensors. We show that the associated bound can be improved unless we are in certain exceptional circumstances for which we can get better algorithms. Finally, we discuss Maximum Scatter TSP, which asks for a tour that maximizes the length of the shortest edge. While the Euclidean version admits an efficient approximation scheme and the problem is known to be NP-hard in three dimensions or higher, the question of getting a polynomial time algorithm for two dimensions remains open. To this end, we develop a general technique for the case of points concentrated around the boundary of a circle that we believe can be extended to more general cases.
  • Thumbnail Image
    Item
    Resource Allocation in Networked and Distributed Environments
    (2006-08-30) Parthasarathy, Srinivasan; Srinivasan, Aravind; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A central challenge in networked and distributed systems is resource management: how can we partition the available resources in the system across competing users, such that individual users are satisfied and certain system-wide objectives of interest are optimized? In this thesis, we deal with many such fundamental and practical resource allocation problems that arise in networked and distributed environments. We invoke two sophisticated paradigms -- linear programming and probabilistic methods -- and develop provably-good approximation algorithms for a diverse collection of applications. Our main contributions are as follows. Assignment problems: An assignment problem involves a collection of objects and locations, and a load value associated with each object-location pair. Our goal is to assign the objects to locations while minimizing various cost functions of the assignment. This setting models many applications in manufacturing, parallel processing, distributed storage, and wireless networks. We present a single algorithm for assignment which generalizes many classical assignment schemes known in the literature. Our scheme is derived through a fusion of linear algebra and randomization. In conjunction with other ideas, it leads to novel guarantees for multi-criteria parallel scheduling, broadcast scheduling, and social network modeling. Precedence constrained scheduling: We consider two precedence constrained scheduling problems, namely sweep scheduling and tree scheduling, which are inspired by emerging applications in high performance computing. Through a careful use of randomization, we devise the first approximation algorithms for these problems with near-optimal performance guarantees. Wireless communication: Wireless networks are prone to interference. This prohibits proximate network nodes from transmitting simultaneously, and introduces fundamental challenges in the design of wireless communication protocols. We develop fresh geometric insights for characterizing wireless interference. We combine our geometric analysis with linear programming and randomization, to derive near-optimal algorithms for latency minimization and throughput capacity estimation in wireless networks. In summary, the innovative use of linear programming and probabilistic techniques for resource allocation, and the novel ways of connecting them with application-specific ideas is the pivotal theme and the focal point of this thesis.