Computer Science Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2756
Browse
2 results
Search Results
Item Frontiers in Lattice Cryptography and Program Obfuscation(2017) Apon, Daniel Christopher; Katz, Jonathan; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this dissertation, we explore the frontiers of theory of cryptography along two lines. In the first direction, we explore Lattice Cryptography, which is the primary sub-area of post-quantum cryptographic research. Our first contribution is the construction of a deniable attribute-based encryption scheme from lattices. A deniable encryption scheme is secure against not only eavesdropping attacks as required by semantic security, but also stronger coercion attacks performed after the fact. An attribute-based encryption scheme allows ``fine-grained'' access to ciphertexts, allowing for a decryption access policy to be embedded in ciphertexts and keys. We achieve both properties simultaneously for the first time from lattices. Our second contribution is the construction of a digital signature scheme that enjoys both short signatures and a completely tight security reduction from lattices. As a matter of independent interest, we give an improved method of randomized inversion of the G gadget matrix, which reduces the noise growth rate in homomorphic evaluations performed in a large number of lattice-based cryptographic schemes, without incurring the high cost of sampling discrete Gaussians. In the second direction, we explore Cryptographic Program Obfuscation. A program obfuscator is a type of cryptographic software compiler that outputs executable code with the guarantee that ``whatever can be hidden about the internal workings of program code, is hidden.'' Indeed, program obfuscation can be viewed as a ``universal and cryptographically-complete'' tool. Our third contribution is the first, full-scale implementation of secure program obfuscation in software. Our toolchain takes code written in a C-like programming language, specialized for cryptography, and produces secure, obfuscated software. Our fourth contribution is a new cryptanalytic attack against a variety of ``early'' program obfuscation candidates. We provide a general, efficiently-testable property for any two branching programs, called partial inequivalence, which we show is sufficient for launching an ``annihilation attack'' against several obfuscation candidates based on Garg-Gentry-Halevi multilinear maps.Item Security through Obscurity: Layout Obfuscation of Digital Integrated Circuits using Don't Care Conditions(2015) Awan, Sana Mehmood; Qu, Gang; Systems Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Contemporary integrated circuits are designed and manufactured in a globalized environment leading to concerns of piracy, overproduction and counterfeiting. One class of techniques to combat these threats is circuit obfuscation which seeks to modify the gate-level (or structural) description of a circuit without affecting its functionality in order to increase the complexity and cost of reverse engineering. Most of the existing circuit obfuscation methods are based on the insertion of additional logic (called “key gates”) or camouflaging existing gates in order to make it difficult for a malicious user to get the complete layout information without extensive computations to determine key-gate values. However, when the netlist or the circuit layout, although camouflaged, is available to the attacker, he/she can use advanced logic analysis and circuit simulation tools and Boolean SAT solvers to reveal the unknown gate-level information without exhaustively trying all the input vectors, thus bringing down the complexity of reverse engineering. To counter this problem, some ‘provably secure’ logic encryption algorithms that emphasize methodical selection of camouflaged gates have been proposed previously in literature [1,2,3]. The contribution of this paper is the creation and simulation of a new layout obfuscation method that uses don't care conditions. We also present proof-of-concept of a new functional or logic obfuscation technique that not only conceals, but modifies the circuit functionality in addition to the gate-level description, and can be implemented automatically during the design process. Our layout obfuscation technique utilizes don’t care conditions (namely, Observability and Satisfiability Don’t Cares) inherent in the circuit to camouflage selected gates and modify sub-circuit functionality while meeting the overall circuit specification. Here, camouflaging or obfuscating a gate means replacing the candidate gate by a 4X1 Multiplexer which can be configured to perform all possible 2-input/ 1-output functions as proposed by Bao et al. [4]. It is important to emphasize that our approach not only obfuscates but alters sub-circuit level functionality in an attempt to make IP piracy difficult. The choice of gates to obfuscate determines the effort required to reverse engineer or brute force the design. As such, we propose a method of camouflaged gate selection based on the intersection of output logic cones. By choosing these candidate gates methodically, the complexity of reverse engineering can be made exponential, thus making it computationally very expensive to determine the true circuit functionality. We propose several heuristic algorithms to maximize the RE complexity based on don’t care based obfuscation and methodical gate selection. Thus, the goal of protecting the design IP from malicious end-users is achieved. It also makes it significantly harder for rogue elements in the supply chain to use, copy or replicate the same design with a different logic. We analyze the reverse engineering complexity by applying our obfuscation algorithm on ISCAS-85 benchmarks. Our experimental results indicate that significant reverse engineering complexity can be achieved at minimal design overhead (average area overhead for the proposed layout obfuscation methods is 5.51% and average delay overhead is about 7.732%). We discuss the strengths and limitations of our approach and suggest directions that may lead to improved logic encryption algorithms in the future. References: [1] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. [2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Circuits,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1069–1074. [3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated Circuit Camouflaging,” ACM Conference on Computer Communications and Security, 2013. [4] Bao Liu, Wang, B., "Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,"Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014 , vol., no., pp.1,6, 24-28 March 2014.