Computer Science Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2756

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Structured Approaches for Exploring Interpersonal Relationships in Natural Language Text
    (2016) Chaturvedi, Snigdha; Daume III, Hal; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Human relationships have long been studied by scientists from domains like sociology, psychology, literature, etc. for understanding people's desires, goals, actions and expected behaviors. In this dissertation we study inter-personal relationships as expressed in natural language text. Modeling inter-personal relationships from text finds application in general natural language understanding, as well as real-world domains such as social networks, discussion forums, intelligent virtual agents, etc. We propose that the study of relationships should incorporate not only linguistic cues in text, but also the contexts in which these cues appear. Our investigations, backed by empirical evaluation, support this thesis, and demonstrate that the task benefits from using structured models that incorporate both types of information. We present such structured models to address the task of modeling the nature of relationships between any two given characters from a narrative. To begin with, we assume that relationships are of two types: cooperative and non-cooperative. We first describe an approach to jointly infer relationships between all characters in the narrative, and demonstrate how the task of characterizing the relationship between two characters can benefit from including information about their relationships with other characters in the narrative. We next formulate the relationship-modeling problem as a sequence prediction task to acknowledge the evolving nature of human relationships, and demonstrate the need to model the history of a relationship in predicting its evolution. Thereafter, we present a data-driven method to automatically discover various types of relationships such as familial, romantic, hostile, etc. Like before, we address the task of modeling evolving relationships but don't restrict ourselves to two types of relationships. We also demonstrate the need to incorporate not only local historical but also global context while solving this problem. Lastly, we demonstrate a practical application of modeling inter-personal relationships in the domain of online educational discussion forums. Such forums offer opportunities for its users to interact and form deeper relationships. With this view, we address the task of identifying initiation of such deeper relationships between a student and the instructor. Specifically, we analyze contents of the forums to automatically suggest threads to the instructors that require their intervention. By highlighting scenarios that need direct instructor-student interactions, we alleviate the need for the instructor to manually peruse all threads of the forum and also assist students who have limited avenues for communicating with instructors. We do this by incorporating the discourse structure of the thread through latent variables that abstractly represent contents of individual posts and model the flow of information in the thread. Such latent structured models that incorporate the linguistic cues without losing their context can be helpful in other related natural language understanding tasks as well. We demonstrate this by using the model for a very different task: identifying if a stated desire has been fulfilled by the end of a story.
  • Thumbnail Image
    Item
    The Circle of Meaning: From Translation to Paraphrasing and Back
    (2010) Madnani, Nitin; Dorr, Bonnie; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The preservation of meaning between inputs and outputs is perhaps the most ambitious and, often, the most elusive goal of systems that attempt to process natural language. Nowhere is this goal of more obvious importance than for the tasks of machine translation and paraphrase generation. Preserving meaning between the input and the output is paramount for both, the monolingual vs bilingual distinction notwithstanding. In this thesis, I present a novel, symbiotic relationship between these two tasks that I term the "circle of meaning''. Today's statistical machine translation (SMT) systems require high quality human translations for parameter tuning, in addition to large bi-texts for learning the translation units. This parameter tuning usually involves generating translations at different points in the parameter space and obtaining feedback against human-authored reference translations as to how good the translations. This feedback then dictates what point in the parameter space should be explored next. To measure this feedback, it is generally considered wise to have multiple (usually 4) reference translations to avoid unfair penalization of translation hypotheses which could easily happen given the large number of ways in which a sentence can be translated from one language to another. However, this reliance on multiple reference translations creates a problem since they are labor intensive and expensive to obtain. Therefore, most current MT datasets only contain a single reference. This leads to the problem of reference sparsity---the primary open problem that I address in this dissertation---one that has a serious effect on the SMT parameter tuning process. Bannard and Callison-Burch (2005) were the first to provide a practical connection between phrase-based statistical machine translation and paraphrase generation. However, their technique is restricted to generating phrasal paraphrases. I build upon their approach and augment a phrasal paraphrase extractor into a sentential paraphraser with extremely broad coverage. The novelty in this augmentation lies in the further strengthening of the connection between statistical machine translation and paraphrase generation; whereas Bannard and Callison-Burch only relied on SMT machinery to extract phrasal paraphrase rules and stopped there, I take it a few steps further and build a full English-to-English SMT system. This system can, as expected, ``translate'' any English input sentence into a new English sentence with the same degree of meaning preservation that exists in a bilingual SMT system. In fact, being a state-of-the-art SMT system, it is able to generate n-best "translations" for any given input sentence. This sentential paraphraser, built almost entirely from existing SMT machinery, represents the first 180 degrees of the circle of meaning. To complete the circle, I describe a novel connection in the other direction. I claim that the sentential paraphraser, once built in this fashion, can provide a solution to the reference sparsity problem and, hence, be used to improve the performance a bilingual SMT system. I discuss two different instantiations of the sentential paraphraser and show several results that provide empirical validation for this connection.
  • Thumbnail Image
    Item
    Combining Linguistic and Machine Learning Techniques for Word Alignment Improvement
    (2005-11-23) Ayan, Necip Fazil; Dorr, Bonnie J; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Alignment of words, i.e., detection of corresponding units between two sentences that are translations of each other, has been shown to be crucial for the success of many NLP applications such as statistical machine translation (MT), construction of bilingual lexicons, word-sense disambiguation, and projection of resources between languages. With the availability of large parallel texts, statistical word alignment systems have proven to be quite successful on many language pairs. However, these systems are still faced with several challenges due to the complexity of the word alignment problem, lack of enough training data, difficulty learning statistics correctly, translation divergences, and lack of a means for incremental incorporation of linguistic knowledge. This thesis presents two new frameworks to improve existing word alignments using supervised learning techniques. In the first framework, two rule-based approaches are introduced. The first approach, Divergence Unraveling for Statistical MT (DUSTer), specifically targets translation divergences and corrects the alignment links related to them using a set of manually-crafted, linguistically-motivated rules. In the second approach, Alignment Link Projection (ALP), the rules are generated automatically by adapting transformation-based error-driven learning to the word alignment problem. By conditioning the rules on initial alignment and linguistic properties of the words, ALP manages to categorize the errors of the initial system and correct them. The second framework, Multi-Align, is an alignment combination framework based on classifier ensembles. The thesis presents a neural-network based implementation of Multi-Align, called NeurAlign. By treating individual alignments as classifiers, NeurAlign builds an additional model to learn how to combine the input alignments effectively. The evaluations show that the proposed techniques yield significant improvements (up to 40% relative error reduction) over existing word alignment systems on four different language pairs, even with limited manually annotated data. Moreover, all three systems allow an easy integration of linguistic knowledge into statistical models without the need for large modifications to existing systems. Finally, the improvements are analyzed using various measures, including the impact of improved word alignments in an external application---phrase-based MT.