Computer Science Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2756

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Computational Methods to Advance Phylogenomic Workflows
    (2015) Bazinet, Adam Lee; Cummings, Michael P; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Phylogenomics refers to the use of genome-scale data in phylogenetic analysis. There are several methods for acquiring genome-scale, phylogenetically-useful data from an organism that avoid sequencing the entire genome, thus reducing cost and effort, and enabling one to sequence many more individuals. In this dissertation we focus on one method in particular — RNA sequencing — and the concomitant use of assembled protein-coding transcripts in phylogeny reconstruction. Phylogenomic workflows involve tasks that are algorithmically and computationally demanding, in part due to the large amount of sequence data typically included in such analyses. This dissertation applies techniques from computer science to improve methodology and performance associated with phylogenomic workflow tasks such as sequence classification, transcript assembly, orthology determination, and phylogenetic analysis. While the majority of the methods developed in this dissertation can be applied to the analysis of diverse organismal groups, we primarily focus on the analysis of transcriptome data from Lepidoptera (moths and butterflies), generated as part of a collaboration known as “Leptree”.
  • Thumbnail Image
    Item
    The Lattice Project: A Multi-model Grid Computing System
    (2009) Bazinet, Adam Lee; Cummings, Michael P; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis presents The Lattice Project, a system that combines multiple models of Grid computing. Grid computing is a paradigm for leveraging multiple distributed computational resources to solve fundamental scientific problems that require large amounts of computation. The system combines the traditional Service model of Grid computing with the Desktop model of Grid computing, and is thus capable of utilizing diverse resources such as institutional desktop computers, dedicated computing clusters, and machines volunteered by the general public to advance science. The production Grid system includes a fully-featured user interface, support for a large number of popular scientific applications, a robust Grid-level scheduler, and novel enhancements such as a Grid-wide file caching scheme. A substantial amount of scientific research has already been completed using The Lattice Project.