UMD Data Collection

Permanent URI for this collectionhttp://hdl.handle.net/1903/27670

University of Maryland faculty and researchers can upload their research products in DRUM for rapid dissemination, global visibility and impact, and long-term preservation. Depositing data in DRUM can assist in compliance with data management and sharing requirements from the NSF, NIH, and other funding agencies and journals. You can also deposit code, documents, images, supplemental material, and other research products. DRUM tracks views and downloads of your research, and all DRUM records are indexed by Google and Google Scholar. Additionally, DRUM assigns permanent DOIs for your items, making it easy for other researchers to cite your work.

Submissions to the Data Collection

To add files to the UMD Data Collection, submit a new item through your associated department or program's DRUM collection and check the box indicating your upload contains a dataset.

Find more information and guidelines for depositing into the Data Collection on the University of Maryland Libraries' DRUM for Data page.

Assistance

Please direct questions regarding the UMD Data Collection or assistance in preparing and depositing data to: lib-research-data@umd.edu.

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Gene Annotation for a Genome Assembly of the stalk-eyed fly, Teleopsis dalmanni
    (2020-09-14) Wilkinson, Gerald; Baker, Richard; Reinhardt, Josephine
    Stalk-eyed flies in the genus Teleopsis carry selfish genetic elements that induce sex ratio meiotic drive (SR) and impact the fitness of male and female carriers. Here, we assemble and describe a chromosome-level genome assembly of the stalk-eyed fly, Teleopsis dalmanni, to elucidate patterns of divergence associated with SR. The genome contains tens of thousands of transposable element (TE) insertions and hundreds of transcriptionally and insertionally active TE families. By resequencing pools of SR and ST males using short and long-reads, we find widespread differentiation and divergence between XSR and XST associated with multiple nested inversions involving most of the sex ratio haplotype. Examination of genomic coverage and gene expression data revealed seven X-linked genes with elevated expression and coverage in SR males. The most extreme and likely drive candidate involves an XSR-specific expansion of an array of partial copies of JASPer, a gene necessary for maintenance of euchromatin and associated with regulation of TE expression. In addition, we find evidence for rapid protein evolution between XSR and XST for testis expressed and novel genes, i.e. either recent duplicates or lacking a dipteran ortholog, including an X-linked duplicate of maelstrom, which is also involved in TE silencing. Overall, the evidence suggests that this ancient XSR polymorphism has had a variety of impacts on repetitive DNA and its regulation in this species.