UMD Data Collection

Permanent URI for this collectionhttp://hdl.handle.net/1903/27670

University of Maryland faculty and researchers can upload their research products in DRUM for rapid dissemination, global visibility and impact, and long-term preservation. Depositing data in DRUM can assist in compliance with data management and sharing requirements from the NSF, NIH, and other funding agencies and journals. You can also deposit code, documents, images, supplemental material, and other research products. DRUM tracks views and downloads of your research, and all DRUM records are indexed by Google and Google Scholar. Additionally, DRUM assigns permanent DOIs for your items, making it easy for other researchers to cite your work.

Submissions to the Data Collection

To add files to the UMD Data Collection, submit a new item through your associated department or program's DRUM collection and check the box indicating your upload contains a dataset.

Find more information and guidelines for depositing into the Data Collection on the University of Maryland Libraries' DRUM for Data page.

Assistance

Please direct questions regarding the UMD Data Collection or assistance in preparing and depositing data to: lib-research-data@umd.edu.

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Data for "Recurrent evolution of extreme longevity in bats"
    (2018) Adams, Danielle; Wilkinson, Gerald
    This dataset was used in a comparative analysis of longevity in bats. Bats live longer than similar-sized mammals, but the number of lineages that have independently evolved extreme longevity has not previously been determined. Here we reconstruct the evolution of size-corrected longevity on a recent phylogeny and find that at least four lineages of bats have lifespans more than four-fold those of similar-sized placental mammals with the ancestral bat projected to live 2.5 times as long. We then use an information theoretic approach to evaluate a series of phylogenetic generalized least squares (PGLS) models containing up to eight variables hypothesized to influence extrinsic mortality. The PLGS analyses reveal that body mass and hibernation predict longevity. Among hibernators, longevity is predicted by median latitude of the species range, while cave roosting and lack of sexual dimorphism predict longevity among nonhibernators. The importance of torpor in extending lifespan is further supported by the one lineage with extreme longevity that does not hibernate but does exhibit flexible thermoregulation, the common vampire bat. We propose a number of potential mechanisms that may enable bats to live so long, and suggest that the ability to tolerate a wide range of body temperatures could be particularly important for surviving viral or other pathogen infections.