Information Studies Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2780
Browse
2 results
Search Results
Item How Can Debugging With Physical Computing Be More Playful For Children?(2024) Zeng, Danyi; Williams-Pierce, Caro; Library & Information Services; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In response to the ongoing call for the education of computational thinking, I explored how debugging activities in a physical computing environment can be more playful and learnable for children. While a lot of studies have addressed the importance of debugging in generic programming learning, the benefits and challenges of physical computing implementation in classrooms, or the potential of playfulness in STEM education, few research focused on an interdisciplinary conversation that sought design solutions to bring playfulness into the learning experience and to improve the user experience cohesively. In this study, based on a synthetical understanding of the relevant studies from computer science, human-computer interaction, and education, I situated the concept of fragile knowledge into the complex, multiple-object environment of physical computing. Accordingly, I designed two debugging projects on micro:bit for 8 participants at KidsTeam at the University of Maryland to understand their intuitive approaches to debugging in the physical computing environment. I analyzed the video data of the two 90-minute sessions and applied semantic coding to examine and compare the participants’ earning experiences, including typical progress and failures. The qualitative findings revealed: 1) the differentiation in the process of debugging between the first-time and returning learners of programming, 2) the participants’ passion for customizing after success by upgrading their projects or testing the limit of the physical chip, and 3) two forms of spontaneous collaborations. Across those experiences, I further identified the failures without feedback caused by the micro:bit’s current coding environment and extended Fish Tanks and Sandboxes, two playful learning principles, to provide design insights for future physical debugging activities that support the findings above.Item ENABLING GEOGRAPHICALLY DISTRIBUTED, INTERGENERATIONAL, CO-OPERATIVE DESIGN(2012) Walsh, Gregory; Druin, Allison; Library & Information Services; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)As more children's technologies are designed to be used with a global audience, new technologies need to be created to include more children's voices in the design process. However, working with those who that are geographically distributed as design partners is difficult because existing technologies do not support this process, do not enable distributed design, or are not child-friendly. In this dissertation, I take a research-through-design approach to develop an online environment that enables geographically distributed, intergenerational co-operative design. I began my research with participant-observations of in-person, co-located intergeneration co-operative design sessions that used Cooperative Inquiry techniques at the University of Maryland. I then analyzed those observations, determined a framework that occurs during in-person design sessions and developed a prototype online design environment based on that scaffolding. With the initial prototype deployed to a geographic distributed, intergenerational co-design team, I employed Cooperative Inquiry to design new children's technologies with children. I iteratively developed the prototype environment over eight weeks to better support geographically distributed co-design. Adults and children participated in these design sessions and there was no significant difference between the children and adults in the number of design sessions in which they chose to participate. After the design research on the prototype was complete, I interviewed the child participants who were in the online intergenerational design team to better understand their experiences. During the interviews, I found that the child participants had strong expectations of social interaction within the online design environment and were frustrated by the lack of seeing other participants online at the same time. In order to alleviate this problem, five of the participants involved their families in some way in the design process and created small, remote intergenerational design teams to compensate for the perceived shortcomings of the online environment. I compared Online Kidsteam with in-person Kidsteam to evaluate if the online environment was successful in supporting geographically-distributed, intergeneration co-design. I found that although it was not the same in terms of the social aspects of in-person Kidsteam, it was successful in its ability to include more people in the design process.