Chemistry & Biochemistry Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2752

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    EXAMINING QUINONE CONTRIBUTION TO THE OPTICAL PROPERTIES OF CHROMOPHORIC DISSOLVED ORGANIC MATTER
    (2024) Ashmore, Rachel; Blough, Neil; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Chromophoric Dissolved Organic Matter (CDOM) in natural waters is largely responsiblefor absorption of light and photochemistry in the water, impacting environmental reactions and aquatic life. The composition of CDOM is greatly varied based on source, photochemical reactions, and natural cycles. The impact of quinone moieties on this structure and photochemical and redox reactions involving CDOM remains the subject of controversy. To investigate the impact of quinone structure on optical properties, model quinone compounds were thoroughly characterized by their optical properties and reactions with sodium dithionite and sodium sulfite. A series of methyl-substituted p-benzoquinones, a methoxy p-benzoquinone, and a range of napthoquinones and anthraquinones were investigated. These model compounds were characterized according to their quinone and hydroquinone molar absorptivities and fluorescence quantum yields. Sodium dithionite reduction of quinones and the impact of structure on the products of this reaction was investigated by reducing the quinones with both sodium dithionite and sodium sulfite and comparing the optical properties of the products to those of the quinone and hydroquinone. The spectra of dithionite reduced p-benzoquinones and napthoquinones suggested the presence of products other than the hydroquinone. Sulfite is produced in solution as a result of dithionite reduction of quinones. Model quinones were therefore also reduced with sodium sulfite to investigate the impact of this side reaction on the dithionite reduction products. High performance liquid chromatography (HPLC) was used to further investigate and quantify the products of dithionite reduction of quinones and the importance of sulfite interference. Although some of the model quinones react with sulfite to form a proposed sulfonated hydroquinone product, based on the observed extent of this reaction in dithionite reductions, the structures of quinones likely to be found in CDOM, and their relatively small contribution to CDOM optical properties, the sulfite reaction was determined to not significantly impact the study of quinone moieties in CDOM. Dithionite selectively reduces quinones, while borohydride reduces ketones, aldehydes, and quinones. Therefore, in CDOM samples, dithionite can be used to isolate the effects of quinone moieties on the optical properties. Dithionite reduction was used to analyse CDOM standards and natural water extracts from the North Pacific Ocean and the Chesapeake Bay to investigate quinone contribution to their optical properties. These results are compared to borohydride reduction results from Cartisano and McDonnell to compare the contribution of quinones to that of ketones and aldehydes. (1, 2) Dithionite reduction showed small impacts on absorbance and fluorescence, whereas significant changes in both were observed for borohydride reduction. Therefore, the optical changes observed under borohydride reduction are attributed to primarily ketones and aldehydes rather than quinones. Model quinones showed significant changes in fluorescence intensity due to dithionite reduction, which are largely not observed for CDOM standards and natural water extracts, further supporting the conclusion that their role in CDOM optical properties is small.
  • Thumbnail Image
    Item
    CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) IN THE OPEN OCEAN: OPTICAL AND CHEMICAL PROPERTIES AND THEIR RELATION TO CDOM STRUCTURE AND SOURCES.
    (2019) Cartisano, Carmen Marie; Blough, Neil V; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The carbon contained as dissolved organic matter (DOM) in the Earth’s oceans is an important factor in the global carbon cycle, but studying and tracking DOM in the aquatic environment can be challenging. However, the light-absorbing and emitting subcomponents of DOM, called chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) can be directly probed using absorption and fluorescence spectroscopy, respectively. Detailed studies on CDOM from the open oceans are limited with many of the existing studies having very limited data sets (only select wavelengths or indices). To address this, the optical properties of CDOM from a variety of geographic locations (North Pacific Ocean: NPO, Equatorial Atlantic Ocean: EAO, Middle Atlantic Bight: MAB, Delaware River and Delaware Bay) were compared, and chemical tests performed (sodium borohydride (NaBH4) reductions and pH titrations). The responses to the chemical tests along with similarities and differences in the optical properties were examined to compare the structures present in terrestrial, coastal and open ocean samples. A long-pathlength capillary waveguide spectrometer was used to characterize open ocean CDOM samples, with the need for a calibration and validated protocol addressed prior to use. The optical properties of the NPO samples did not vary significantly at depths from ~300-4500 meters with only the surface samples showing significant differences. Solid phase extraction of the natural waters did remove unique absorbing and emitting bands in the UV region that could be marine in origin, while enriching the “humic-like” fraction. The open ocean samples showed similarities to the coastal and riverine samples including: 1) monotonically decreasing and unstructured absorbance with increasing wavelength; 2) loss of absorption upon NaBH4 reduction at all wavelength, with the largest percent loss in the visible; 3) enhanced absorption with increasing pH with spectral changes that occurred over the same pH ranges as the pKas of carboxylic acids and phenols; 4) attenuation of absorption enhancement with increasing pH following reduction at most wavelengths. These similarities not only suggest that there are structural similarities throughout all samples, but also indicate that there may be a terrestrial source of CDOM in the open ocean.
  • Thumbnail Image
    Item
    Effect of Borohydride Reduction and pH on the Optical Properties of Humic Substances
    (2014) Schendorf, Tara Marie; Blough, Neil V; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Despite decades of research, the structural basis for the optical properties of chromophoric dissolved organic matter (CDOM) and humic substances (HS) are still not clear. Through several analytical techniques, it is known that CDOM contains carbonyls (aromatic ketones, aldehydes, and quinones), carboxylic acids, and phenols. The charge-transfer model proposed to explain the optical properties of these materials assigns the short-wavelength absorption (<350 nm) and fluorescence emission to electron donors (phenols) and acceptors (carbonyls), while the long-wavelength absorption is attributed to charge-transfer interactions among these species. Because carbonyls are reducible species a method was developed to eliminate them and to investigate its effects on the optical properties of HS in relation to their structure. In addition, the effect of pH on the optical absorption spectra for both untreated and borohydride reduced HS was examined and related to the deprotonation of carboxylic acids and phenolic moieties.