Geology Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1594

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Scale Impact of Soil Moisture Observations to Noah-MP Land Surface Model Simulations
    (MDPI, 2020-04-06) Yin, Jifu; Zhan, Xiwu
    Due to the limitations of satellite antenna technology, current operational microwave soil moisture (SM) data products are typically at tens of kilometers spatial resolutions. Many approaches have thus been proposed to generate finer resolution SM data using ancillary information, but it is still unknown if assimilation of the finer spatial resolution SM data has beneficial impacts on model skills. In this paper, a synthetic experiment is thus conducted to identify the benefits of SM observations at a finer spatial resolution on the Noah-MP land surface model. Results of this study show that the performance of the Noah-MP model is significantly improved with the benefits of assimilating 1 km SM observations in comparison with the assimilation of SM data at coarser resolutions. Downscaling satellite microwave SM observations from coarse spatial resolution to 1 km resolution is recommended, and the assimilation of 1 km remotely sensed SM retrievals is suggested for NOAA National Weather Service and National Water Center.
  • Thumbnail Image
    Item
    A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology
    (MDPI, 2022-03-31) Yin, Jifu; Zhan, Xiwu; Liu, Jicheng; Ferraro, Ralph R.
    Soil moisture operational product system (SMOPS) is developed by National Oceanic and Atmospheric Administration (NOAA) to provide the real-time blended soil moisture (SM) for numeric weather prediction and national water model applications. However, all individual satellite SM data ingested into the current operational SMOPS are scaled to global land data assimilation system (GLDAS) 0–10 cm SM climatology before the combination. As a result, the useful information from the original microwave SM retrievals could be lost, and the GLDAS model errors could be brought into the final SMOPS blended product. In this paper, we propose to scale the individual SM retrievals to the soil moisture active passive (SMAP) data through building regression models. The rescaled individual SM data and the SMAP observations then have similar climatology and dynamics, which allows producing the SMOPScdr (distinguishing with the current operational SMOPSopr) data using an equal-weight averaging approach. With respect to the in situ SM measurements, the developed SMOPScdr is more successful tracking the surface SM status than the individual satellite SM products with significantly decreased errors. The proposed method also preserves the climatology of the reference SMAP data for the period when SMAP is not available, allowing us to produce a long-term SMOPScdr data product.