Geology Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1594

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A Better Understanding of Atmospheric Methane Sources Using 13CH3D and 12CH2D2 Clumped Isotopes
    (2024-09) Haghnegahdar, Mojhgan A.
    We evaluate the use of clumped isotopes of methane (CH4) to fingerprint local atmospheric sources of methane. We focus on a regenerative stormwater conveyance (RSC) stream wetland site running through the University of Maryland campus, which emits methane due to its engineering. Air samples in the RSC were collected at different heights above the surface and at different times of the day including both early in the morning, after methane accumulated below the nocturnal boundary layer, and late in the afternoon when convection mixed air to the cloud layer. Measured Δ12CH2D2 values of air samples record mixing between locally produced methane with low D/H and ambient air. The Δ12CH2D2 of the near surface air collected at the RSC during the early morning ranges from ~+23‰ to ~+35‰ which is lower than the ~+50‰ values of tropospheric air. Mixing between background air (with Δ12CH2D2 ~+50‰) and methane captured from chamber and bubble samples, as well as produced in incubation (all with negative Δ12CH2D2), explains the observed values of Δ12CH2D2 and Δ13CH3D of near surface RSC air samples. The effect of mixing with biogenic sources on Δ13CH3D is much smaller. The findings demonstrate how methane isotopologues can be used as a tool not only to fingerprint local contributions to these greenhouse gas emissions but also to identify sources of near-surface methane hot spots.
  • Thumbnail Image
    Item
    Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes through Direct Insertion in a Land Surface Model
    (MDPI, 2022-05-17) Zhang, Zhen; Chatterjee, Abhishek; Ott, Lesley; Reichle, Rolf; Feldman, Andrew F.; Poulter, Benjamin
    Soil moisture impacts the biosphere–atmosphere exchange of CO2 and CH4 and plays an important role in the terrestrial carbon cycle. A better representation of soil moisture would improve coupled carbon–water dynamics in terrestrial ecosystem models and could potentially improve model estimates of large-scale carbon fluxes and climate feedbacks. Here, we investigate using soil moisture observations from the Soil Moisture Active Passive (SMAP) satellite mission to inform simulated carbon fluxes in the global terrestrial ecosystem model LPJ-wsl. Results suggest that the direct insertion of SMAP reduces the bias in simulated soil moisture at in situ measurement sites by 40%, with a greater improvement at temperate sites. A wavelet analysis between the model and measurements from 26 FLUXNET sites suggests that the assimilated run modestly reduces the bias of simulated carbon fluxes for boreal and subtropical sites at 1–2-month time scales. At regional scales, SMAP soil moisture can improve the estimated responses of CO2 and CH4 fluxes to extreme events such as the 2018 European drought and the 2019 rainfall event in the Sudd (Southern Sudan) wetlands. The simulated improvements to land–surface carbon fluxes using the direct insertion of SMAP are shown across a variety of timescales, which suggests the potential of SMAP soil moisture in improving the model representation of carbon–water coupling.