Geology Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1594

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Inverting COSMIC-2 Phase Data to Bending Angle and Refractivity Profiles Using the Full Spectrum Inversion Method
    (MDPI, 2021-05-05) Adhikari, Loknath; Ho, Shu-Peng; Zhou, Xinjia
    The radio occultation technique provides stable atmospheric measurements that can work as a benchmark for calibrating and validating satellite-sounding data. Launched on 25 June 2019, the Constellation Observing System for Meteorology, Ionosphere, and Climate 2 and Formosa Satellite Mission 7 (COSMIC-2/FORMOSAT-7) are expected to produce about 5000 high-quality RO observations daily over the tropics and subtropics. COSMIC-2 constellation consists of 6 Low Earth Orbit (LEO) satellites in 24° inclination orbits at 720 km altitude and distributed mainly between 45°N to 45°S. The COSMIC-2 observations have uniform temporal coverage between 30°N to 30°S. This paper presents an independent inversion algorithm to invert COSMIC-2 geometry and phase data to bending angle and refractivity. We also investigate the quality of Global Navigation Satellite System (GNSS) and LEO position vectors derived from the UCAR COSMIC Data Analysis and Archive Center (CDAAC). The GNSS and LEO position vectors are stable with LEO position variations < 1.4 mm/s. The signal-to-noise ratio (SNR) on the L1 band ranges from 300–2600 v/v with a mean of 1600 v/v. The inversion algorithm developed at NOAA Center for Satellite Applications and Research (STAR) uses the Full Spectrum Inversion (FSI) method to invert COSMIC-2 geometry and phase data to bending angle and refractivity profiles. The STAR COSMIC-2 bending angle and refractivity profiles are compared with in situ radiosonde, the current COSMIC-2 products derived from CDAAC, and the collocated European Center for Medium-Range Weather Forecasts (ECMWF) climate reanalysis data ERA5. The mean bias at 8–40 km altitude among the UCAR, ERA5, and STAR is <0.1% for both bending and refractivity, with a standard deviation in the range of 1.4–2.3 and 0.9–1.1% for bending angles refractivity, respectively. In the lowest 2 km, the RO bias relative to ERA-5 shows a strong latitudinal and SNR dependence.
  • Thumbnail Image
    Item
    Verification and Validation of the COSMIC-2 Excess Phase and Bending Angle Algorithms for Data Quality Assurance at STAR
    (MDPI, 2022-07-08) Zhang, Bin; Ho, Shu-peng; Cao, Changyong; Shao, Xi; Dong, Jun; Chen, Yong
    In recent years, Global Navigation Satellite System (GNSS) radio occultation (RO) has become a critical observation system for global operational numerical weather prediction. Constellation Observing System for Meteorology, Ionosphere, Climate (COSMIC) 2 (COSMIC-2) has been a backbone RO mission for NOAA. NOAA also began to purchase RO data from commercial sources in 2020. To ensure the consistent quality of RO data from different sources, NOAA Center for Satellite Applications and Research (STAR) has developed capabilities to process all available RO data from different missions. This paper describes the STAR RO processing systems which convert the pseudo-range and carrier phase observations to excess phases and bending angles (BAs). We compared our COSMIC-2 data products with those processed by the University Corporation for Atmospheric Research (UCAR) COSMIC Data Analysis and Archive Center (CDAAC). We processed more than twelve thousand COSMIC-2 occultation profiles. Our results show that the excess phase difference between UCAR and STAR is within a few centimeters at high altitudes, although the difference increases towards the lower atmosphere. The BA profiles derived from the excess phase are consistent with UCAR. The mean relative BA differences at impact height from 10 to 30 km are less than 0.1% for GLObal NAvigation Satellite System (GLONASS) L2C signals and Global Positioning System (GPS) L2C and L2P signals. The standard deviations are 1.15%, 1.15%, and 1.32% for GLONASS L2C signal and for GPS L2C and L2P signals, respectively. The BA profiles agree with those derived from European Center for Medium-range Weather Forecast (ECMWF) reanalysis version 5 (ERA5). The Signal-to-Noise-Ratio (SNR) plays an essential role in the processing. The STAR BA profiles with higher L1 SNRs (L1 at 80 km) tend to yield more consistent results than those from UCAR, with a negligible difference and a smaller deviation than lower SNR profiles. Profiles with lower SNR values tend to show a more significant standard deviation towards the surface during the open-loop stage in the lower troposphere than those of higher SNR. We also found that the different COSMIC-2 clock solutions could contribute to the significant relative BA difference at high altitudes; however, it has little effect on the lower troposphere comparisons given larger BA values.